Package ‘secr’

September 20, 2017

Type Package

Title Spatially Explicit Capture-Recapture

Version 3.1.0

Depends R (>=3.2.0), methods

Imports abind, graphics, grDevices, MASS, utils, parallel, nlme, sp, mgcv, raster, stats, tools
Suggests maptools, spsurvey, rgdal, knitr, gdistance, rgeos, readxl

VignetteBuilder knitr

Date 2017-09-20

Author Murray Efford

Maintainer Murray Efford <murray.efford@otago.ac.nz>

Description Functions to estimate the density and size of a spatially distributed animal popula-
tion sampled with an array of passive detectors, such as traps, or by searching polygons or tran-
sects. Models incorporating distance-dependent detection are fitted by maximizing the likeli-
hood. Tools are included for data manipulation and model selection.

License GPL (>=2)
LazyData yes

LazyDataCompression xz

URL http://www.otago.ac.nz/density

R topics documented:

secr-package 4
addCovariates e e e e e e e e e e e 7
addSightings e e 8
addTelemetry 10
AICSeCT o e e e 12
as.mask L e e e 15
AULOINT o e e e e e e e e e e e e 16
BUGS . . e e e e 18
capthist e 20
capthist.parts L e e 21
circular L e e e e 23
clone e e e 25
closedN e e e 26
closure.test L L e e e e e e e e e 29

http://www.otago.ac.nz/density

R topics documented:

cluster e e 31
COEfLSECT e e e e e e e e 32
CONfINL.SECT e e 32
CONLOUT . . o v v v e i e 34
COVATIALES v v v e i e i e 36
CV e e 37
D.designdata e e 38
deermouse e e e 39
deleteMaskPoints 41
derived e e e e 43
details e 45
detectfn e e 48
deteCtor e e e e e e e e e e e e 50
deviance L e 51
discretize e e e e e e e e 52
distancetotrap e e e e e e 54
Dsurface e 55
ellipSe.SECT e e e e 56
empirical.varDo oL 57
esa.plot . . . L e 61
ESAPIOLSECT e e e 63
expected.n oL L. e 65
FAQ . . . e 66
fx.otal e e e e e e e e 68
X . e 70
hCOV . . . e e 73
head e 76
homerange L 77
hornedlizard 80
housemouse e e e e 82
IP-SECT . o o e 83
JOIN L e e 87
LLsurface.secr e e 89
logit o e 90
logmultinom L e e e 91
LRutest e e e e 92
make.capthist 93
make.mask e e e e e e e e 95
mMake.SyStematico e e e e e 98
Make.traps e e e e e e e e e e e e e e 100
mMaKe.trl e e e e e e e e e e e e e e e e 103
mask e e 104
mask.check e 105
model.average L 108
NS & o v e e e e e e e e e e e e e 111
occasionKey L e 112
ovenbird e e 113
OVENSONEZ .+« ¢ v v v v v e e e e e e e e e e e e e e e e 115
OVPOSSUM . . o o o o e e e e e e e e e e e e e 117
parsecrfit 119
Parallel e e e 121

R topics documented: 3

PG . e 125
plot.capthist e e e 127
plotmask e 130
PIOLPOPN . . . o e e e e e e e e e 133
PIOLSECT o o e e e e e 134
plottraps 136
plotMaskEdge e 138
pmixProfileLL 138
pointsInPolygon 140
polyareao e e e 141
POPIL . o o o o e e e 141
POSSUIML © « v v v vt e et e e e e e e e e e e e e 142
PrediCt.SECT L e e e e e e 144
predictDsurface 146
print.capthist oL 148
PIINLSECT L e e e e 149
PIANLAAPS .« . . . o o e e e e e e e e e 150
randomHabitat 151
TASIET . . v o i i e e e e e e e e e e e e e e 153
rbind.capthist 155
hind.popn e e e e 157
rbind.traps 158
read.capthist oL 159
readmask 162
read.telemetry L. e 163
readtraps e e e 164
rectangularMask oL L 166
reduce 167
reduce.capthist L e e e e e 168
region.N 170
RMarklnput e 173
Rsurface e 175
SCOTE.LESE . . . o o o e e e e e e e e 176
secr.design.MS . . L 179
SECLfit e 181
secrmake.newdata L.l 186
secrmodel 187
secrmodel.density L e e 188
secrmodel.detection L 189
SECIBSE . v v v e e e e e e e e e 192
secrdemo e e 194
sectRNG e 196
SECIESE . v v v e e e e e e e e e e e 197
SESSION . . v v v i e e e e e e e 198
shareFactorLevels 200
SIghting L e e e e 200
signal ... L e 201
signalmatriX e e e 202
sim.capthist L e e e e 203
SIMLPOPIL . . o o v o v it i e e e e e e e 207
sim.popndetails 211

SIIMLSECT . & v v v o e e e e e e e e e e e e e e e e e e e 213

4 secr-package
skinko 216
smooths 218
SIIP . . o e e e e e 220
sort.capthiSt e e 221
SPACECAP 222
SPACINE .« v v e e e e e e e e 224
Speed . . . e e e e e 225
stoatDNA s 227
stripdegend 229
subset.capthist 231
subset.mask 233
SUDSELPOPN e e e 234
SUDSELLTAPS © . v v v v e e e e e e e e e e e e e e e e e e e 235
suggestbuffer 236
summary.capthist L 238
summary.mask 240
SUMMATY.ATAPS « « ¢ o v v v v e e e e e e e e e e e e e e e e e 241
MEVATYINZCOV . . . v v v v it e e e e e e e e e e e e e e e e e e 242
transformations o 243
trap.builder 245
raps e 249
traps.infoo L 251
1551 0 252
Troubleshooting e 253
updateCH e 254
USAZE .+ v v v e 255
usagePlot 257
userdiSt . ..o L 259
utility . ..o 260
VEOV.SECT o v v v v v v o e e e e e e e e e e e 262
verify . . e 263
WIE.CAPLUIES o v e i it it e e e e e e e e e 265
writeGPS L 266
Index 268
secr-package Spatially Explicit Capture—Recapture Models
Description
Functions to estimate the density and size of a spatially distributed animal population sampled with
an array of passive detectors, such as traps, or by searching polygons or transects.
Details

Package: secr

Type: Package

Version: 3.1.0

Date: 2017-09-20

License: GNU General Public License Version 2 or later

secr-package 5

Spatially explicit capture—recapture is a set of methods for studying marked animals distributed in
space. Data comprise the locations of detectors (traps, searched areas, etc. described in an object
of class ‘traps’), and the detection histories of individually marked animals. Individual histories are
stored in an object of class ‘capthist’ that includes the relevant ‘traps’ object.

Models for population density (animals per hectare) and detection are defined in secr using sym-
bolic formula notation. Density models may include spatial or temporal trend. Possible predictors
for detection probability include both pre-defined variables (t, b, etc.) corresponding to ‘time’, ‘be-
haviour’ and other effects), and user-defined covariates of several kinds. Habitat is distinguished
from nonhabitat with an object of class ‘mask’.

Models are fitted in secr by maximizing either the full likelihood or the likelihood conditional on
the number of individuals observed (n). Conditional likelihood models are limited to homoge-
neous Poisson density, but allow continuous individual covariates for detection. A model fitted with
secr.fit is an object of class secr. Generic methods (plot, print, summary, etc.) are provided for
each object class.

A link at the bottom of each help page takes you to the help index. Several vignettes complement
the help pages:

General interest

secr-overview.pdf general introduction
secr-datainput.pdf data formats and input functions
secr-tutorial.pdf introductory tutorial
secr-habitatmasks.pdf buffers and habitat masks

secr-troubleshooting.pdf problems with secr.fit, including speed issues

More specialised topics

secr-densitysurfaces.pdf modelling density surfaces
secr-finitemixtures.pdf mixture models for individual heterogeneity
secr-markresight.pdf mark-resight data and models
secr-multisession.pdf multi-session capthist objects and models
secr-noneuclidean.pdf non-Euclidean distances

secr-parameterisations.pdf alternative parameterisations sigmak, a0
secr-polygondetectors.pdf ~ using polygon and transect detector types
secr-sound.pdf analysing data from microphone arrays
secr-varyingeffort.pdf variable effort in SECR models

The help pages are also available as secr-manual.pdf.

The datasets possum, skink, ovenbird, housemouse, deermouse, ovensong, hornedlizard and stoatDNA
include examples of fitted models.

Two add-on packages extend the capability of secr and are documented separately. secrlinear
enables the estimation of linear density (e.g., animals per km) for populations in linear habitats
such as stream networks (secrlinear-vignette.pdf). secrdesign enables the assessment of alternative
study designs by Monte Carlo simulation; scenarios may differ in detector (trap) layout, sampling
intensity, and other characteristics (secrdesign-vignette.pdf).

The analyses in secr extend those available in the software Density (see www.otago.ac.nz/density
for the most recent version of Density). Help is available on the ‘DENSITY | secr’ forum at
www.phidot.org and the Google group ‘secr’. Feedback on the software is also welcome, including
suggestions for additional documentation or new features consistent with the overall design.

http://www.otago.ac.nz/density/pdfs/secr-tutorial.pdf
http://www.otago.ac.nz/density/pdfs/secr-habitatmasks.pdf
http://www.otago.ac.nz/density/pdfs/secr-troubleshooting.pdf
http://www.otago.ac.nz/density/pdfs/secr-densitysurfaces.pdf
http://www.otago.ac.nz/density/pdfs/secr-finitemixtures.pdf
http://www.otago.ac.nz/density/pdfs/secr-markresight.pdf
http://www.otago.ac.nz/density/pdfs/secr-multisession.pdf
http://www.otago.ac.nz/density/pdfs/secr-noneuclidean.pdf
http://www.otago.ac.nz/density/pdfs/secr-parameterisations.pdf
http://www.otago.ac.nz/density/pdfs/secr-polygondetectors.pdf
http://www.otago.ac.nz/density/pdfs/secr-sound.pdf
http://www.otago.ac.nz/density/pdfs/secr-varyingeffort.pdf
https://cran.r-project.org/package=secrlinear/vignettes/secrlinear-vignette.pdf
https://cran.r-project.org/package=secrdesign/vignettes/secrdesign-vignette.pdf
http://www.otago.ac.nz/density/index.html
http://www.phidot.org/forum/index.php

6 secr-package

Acknowledgements

David Borchers made many of these methods possible with his work on the likelihood. Deanna
Dawson edited some of the documentation (the cleaner bits!) and her support and collaboration
were important throughout. Tiago Marques and Mike Meredith suggested many improvements to
the documentation and provided valued criticism and support. Erin Peterson and Mathias Tobler
made specific suggestions that improved the randomHabitat and par.secr.fit functions.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture-recapture studies. Biometrics 64, 377-385.

Borchers, D. L. and Fewster, R. M. (2016) Spatial capture—recapture models. Statistical Science
31, 219-232.

Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598-610.

Efford, M. G. (2011) Estimation of population density by spatially explicit capture—recapture with
area searches. Ecology 92, 2202-2207.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255-269.

Efford, M. G., Borchers D. L. and Mowat, G. (2013) Varying effort in capture-recapture studies.
Methods in Ecology and Evolution 4, 629-636.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676-2682.

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture-
recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217-228.

Efford, M. G. and Fewster, R. M. (2013) Estimating population size by spatially explicit capture—
recapture. Oikos 122, 918-928.

Efford, M. G. and Hunter, C. M. (2017) Spatial capture—mark—resight estimation of animal popula-
tion density. Biometrics in press DOI: 10.1111/biom.12766.

Efford, M. G. and Mowat, G. (2014) Compensatory heterogeneity in capture-recapture data.Ecology
95, 1341-1348.

Royle, J. A., Chandler, R. B., Sollmann, R. and Gardner, B. (2014) Spatial capture—recapture.
Academic Press.

Royle, J. A. and Gardner, B. (2011) Hierarchical spatial capture-recapture models for estimating
density from trapping arrays. In: A.F. O’Connell, J.D. Nichols and K.U. Karanth (eds) Camera
Traps in Animal Ecology: Methods and Analyses. Springer, Tokyo. Pp. 163-190.

See Also

read.capthist, secr.fit, traps, capthist, mask

addCovariates 7

Examples

Not run:

generate some data & plot
detectors <- make.grid (nx = 10, ny = 10, spacing = 20,
detector = "multi")
plot(detectors, label = TRUE, border = @, gridspace =
detections <- sim.capthist (detectors, noccasions = 5,
popn = list(D = 5, buffer = 100),
detectpar = list(gd = 0.2, sigma = 25))
session(detections) <- "Simulated data”
plot(detections, border = 20, tracks = TRUE, varycol = TRUE)

20)

generate habitat mask
mask <- make.mask (detectors, buffer = 100, nx = 48)

fit model and display results

secr.model <- secr.fit (detections, model = g@~b, mask = mask)
secr.model

End(Not run)

addCovariates Add Covariates to Mask or Traps

Description
Tools to construct spatial covariates for existing mask or traps objects from a spatial data source.
Possible sources include GIS data such as ESRI polygon shapefiles input using maptools.

Usage

addCovariates(object, spatialdata, columns = NULL, strict = FALSE, replace = FALSE)

Arguments
object mask or traps object
spatialdata spatial data source (see Details)
columns character vector naming columns to include (all by default)
strict logical; if TRUE a check is performed for points in object that lie outside
spatialdata (mask data sources only)
replace logical; if TRUE then covariates with duplicate names are replaced; otherwise a
new column is added
Details

The goal is to obtain the value(s) of one or more spatial covariates for each point (i.e. row) in
object. The procedure depends on the data source spatialdata, which may be either a spatial
coverage (raster or polygon) or an object with covariate values at points (another mask or traps
object). In the first case, an overlay operation is performed to find the pixel or polygon matching
each point. In the second case, a search is conducted for the closest point in spatialdata.

8 addSightings

If spatialdata is a character value then it is interpreted as the name of a polygon shape file (ex-
cluding ‘.shp’).

If spatialdata is a SpatialPolygonsDataFrame or a SpatialGridDataFrame then it will be used in
an overlay operation as described.

If spatialdata is a mask or traps object then it is searched for the closest point to each point
in object, and covariates are drawn from the corresponding rows in covariates(spatialdata).
By default (strict = FALSE), values are returned even when the points lie outside any cell of the
mask.

Value
An object of the same class as object with new or augmented covariates attribute. Column
names and types are derived from the input.

Warning

Use of a SpatialGridDataFrame for spatialdata is untested.

Note
The package maptools is needed to read a shapefile, and the package sp is needed for spatial
overlay.

See Also

make.mask, read.mask, read. traps

Examples

In the Lake Station skink study (see ?skink), habitat covariates were
measured only at trap sites. Here we extrapolate to a mask, taking
values for each mask point from the nearest trap.

LSmask <- make.mask(LStraps, buffer = 30, type = "trapbuffer”)
tempmask <- addCovariates(LSmask, LStraps)

show first few lines

head(covariates(tempmask))

addSightings Mark-resight Data

Description

Add sighting data on unmarked individuals and/or unidentified marked individuals to an existing
capthist object.

Usage

addSightings(capthist, unmarked = NULL, nonID = NULL, uncertain = NULL, verify = TRUE,
L)

addSightings 9

Arguments
capthist secr capthist object
unmarked matrix or list of matrices of sightings of unmarked animals, Tu, or file name (see
Details)
nonID matrix or list of matrices of unidentified sightings of marked animals, Tm, or
file name (see Details)
uncertain matrix or list of matrices of uncertain sightings, Tn, or file name (see Details)
verify logical; if TRUE then the resulting capthist object is checked with verify
other arguments passed to read. table
Details

The capthist object for mark-resight analysis comprises distinct marking and sighting occasions,
defined in the markocc attribute of traps(capthist). Add this attribute to traps(capthist)
with markocc before using *addSightings’. See also read. traps and read.capthist.

Mark-resight data may be binary (detector type ‘proximity’) or counts (detector types ‘count’, ’poly-
gon’ or ’transect’). The detector type is an attribute of traps(capthist). Values in unmarked and
nonID should be whole numbers, and may be greater than 1 even for binary proximity detectors
because multiple animals may be detected simultaneously at one place.

Arguments unmarked, nonID, uncertain provide data for attributes ‘“Tu’, “Tm’, ‘Tn’ respectively.
They may take several forms

* asingle integer, the sum of all counts*

¢ a matrix of the count on each occasion at each detector (dimensions K x S, where K is the num-
ber of detectors and S is the total number of occasions). Columns corresponding to marking
occasions should be all-zero.

* for multi-session data, a list with components as above

* a character value with the name of a text file containing the data; the file will be read with
read.table. The ...argument allows some control over how the file is read. The data format
comprises at least S+1 columns. The first is a session identifier used to split the file when the
data span multiple sessions; it should be constant for a single-session capthist. The remaining
S columns contain the counts for occasions 1:S, one row per detector. Further columns may
be present; they are ignored at present.

* although this is convenient, the full matrix of counts provides more flexibility (e.g., when you
wish to subset by occasion), and enables modelling of variation across detectors and occasions.
Value

A capthist object with the same structure as the input, but with new sighting-related attributes Tu
(sightings of unmarked animals) and/or Tm (unidentified sightings of marked animals). Input val-
ues, including NULL, overwrite existing values.

Warning

** Mark-resight data formats and models are experimental in secr 2.10.0 and subject to change **

See Also

markocc, read.capthist, read. traps, sim.resight, Tm, Tu, Tn, secr-markresight.pdf

http://www.otago.ac.nz/density/pdfs/secr-markresight.pdf

10 addTelemetry

Examples

Not run:

suppose CH is a capthist object with detector type proximity,
attribute 'markocc' is defined for traps(CH), and

unmarkedsightings.txt is a text file with a

compatible K x S array of non-negative integer values.

Tu <- read.table('unmarkedsightings.txt')
CH2 <- addSightings(CH, unmarked = Tu)

End(Not run)

addTelemetry Combine Telemetry and Detection Data

Description

Animal locations determined by radiotelemetry can be used to augment capture-recapture data.
The procedure in secr is first to form a capthist object containing the telemetry data and then to
combine this with true capture—recapture data (e.g. detections from hair-snag DNA) in another
capthist object. secr.fit automatically detects the telemetry data in the new object.

Usage

addTelemetry (detectionCH, telemetryCH, type = c('concurrent', 'dependent','independent'),
collapsetelemetry = TRUE, verify = TRUE)

xy2CH (CH, inflation = 1e-08)

telemetrytype (object) <- value

telemetrytype (object, ...)
Arguments
detectionCH single-session capthist object, detector type ‘single’, ‘multi’, ‘proximity’ or ‘count’
telemetryCH single-session capthist object, detector type ‘telemetryonly’
type character (see Details)
collapsetelemetry
logical; if TRUE then telemetry occasions are collapsed to one
verify logical; if TRUE then verify.capthist is called on the output
CH capthist object with telemetryxy attribute
inflation numeric tolerance for polygon
object secr traps object
value character telemetry type replacement value

other arguments

addTelemetry 11

Details

It is assumed that a number of animals have been radiotagged, and their telemetry data (xy-coordinates)
have been input to telemetryCH, perhaps using read. capthist with detector = "telemetryonly”
and fmt = "XY", or with read. telemetry.

A new capthist object is built comprising all the detection histories in detectionCH, plus empty (all-
zero) histories for every telemetered animal not in detectionCH. Telemetry is associated with new
sampling occasions and a new detector (nominally at the same point as the first in detectionCH).
The number of telemetry fixes of each animal is recorded in the relevant cell of the new capthist
object (CH[i, s, K+1] for animal i and occasion s if there were K detectors in detectionCH).

The new sampling occasion(s) are assigned the detector type ‘telemetry’ in the traps attribute of
the output capthist object, and the traps attribute telemetrytype is set to the value provided. The
telemetry type may be “independent” (no matching of individuals in captured and telemetered sam-
ples), “dependent” (telemetered animals are a subset of captured animals) or “concurrent” (histories
may be capture-only, telemetry-only or both capture and telemetry).

The telemetry locations are carried over from telemetryCH as attribute ‘xylist’ (each component of
xylist holds the coordinates of one animal; use telemetryxy to extract).

The default behaviour of ‘addTelemetry* is to automatically collapse all telemetry occasions into
one. This is computationally more efficient than the alternative, but closes off some possible models.

Xy2CH partly reverses addTelemetry: the location information in the telemetryxy attribute is con-
verted back to a capthist with detector type ‘telemetry’.

Value
A single-session capthist object with the same detector type as detectionCH, but possibly with
empty rows and an ‘telemetryxy’ attribute.

Note

Telemetry provides independent data on the location and presence of a sample of animals. These
animals may be missed in the main sampling that gives rise to detectionCH i.e., they may have
all-zero detection histories.

The ‘telemetry’ detector type is used for telemetry occasions in a combined dataset.

See Also

capthist, make.telemetry, read. telemetry, telemetryxy telemetered

Examples

Not run:

Generate some detection and telemetry data, combine them using
addTelemetry, and perform analyses

detectors
te <- make.telemetry()
tr <- make.grid(detector = "proximity")

simulated population and 50% telemetry sample
totalpop <- sim.popn(tr, D = 20, buffer = 100)
tepop <- subset(totalpop, runif(nrow(totalpop)) < 0.5)

12 AIC.secr

simulated detection histories and telemetry

the original animalID (renumber = FALSE) are needed for matching

trCH <- sim.capthist(tr, popn = totalpop, renumber = FALSE, detectfn = "HHN")

teCH <- sim.capthist(te, popn = tepop, renumber=FALSE, detectfn = "HHN",
detectpar = list(lambda® = 3, sigma = 25))

combinedCH <- addTelemetry(trCH, teCH)

summarise and display

summary (combinedCH)

plot(combinedCH, border = 150)

ncapt <- apply(combinedCH,1,sum)
points(totalpoplrow.names(combinedCH)[ncapt==0],1, pch = 1)
points(totalpopl[row.names(combinedCH)[ncapt>0],], pch = 16)

for later comparison of precison we must fix the habitat mask

mask <- make.mask(tr, buffer = 100)

fit.tr <- secr.fit(trCH, mask = mask, CL = TRUE, detectfn = "HHN") ## trapping alone

fit.te <- secr.fit(teCH, mask = mask, CL = TRUE, start = log(20), ## telemetry alone
detectfn = "HHN")

fit2 <- secr.fit(combinedCH, mask = mask, CL = TRUE, ## combined
detectfn = "HHN")

improved precision when focus on realised population
(compare CVD)

derived(fit.tr, distribution = "binomial")
derived(fit2, distribution = "binomial")

may also use CL = FALSE
secr.fit(combinedCH, CL = FALSE, detectfn = "HHN", trace = FALSE)

End(Not run)

AIC.secr Compare SECR Models

Description

Terse report on the fit of one or more spatially explicit capture-recapture models. Models with
smaller values of AIC (Akaike’s Information Criterion) are preferred. Extraction ([) and logLik
methods are included.

Usage

S3 method for class 'secr'

AIC(object, ..., sort = TRUE, k = 2, dmax = 10, criterion = c("AICc","AIC"))
S3 method for class 'secrlist'

AIC(object, ..., sort = TRUE, k = 2, dmax = 10, criterion = c("AICc","AIC"))
S3 method for class 'secr'

logLik(object, ...)

secrlist(...)

AIC.secr 13

S3 method for class 'secrlist'

x[i]
Arguments
object secr object output from the function secr.fit, or a list of such objects with
class c("list","secrlist")
other secr objects
sort logical for whether rows should be sorted by ascending AICc
k numeric, penalty per parameter to be used; always k = 2 in this method
dmax numeric, maximum AIC difference for inclusion in confidence set
criterion character, criterion to use for model comparison and weights
X secrlist
i indices
Details

Models to be compared must have been fitted to the same data and use the same likelihood method
(full vs conditional).

AIC with small sample adjustment is given by

2K (K +1)

AIC, = —2log(L(0)) + 2K + e

where K is the number of "beta" parameters estimated. The sample size n is the number of indi-
viduals observed at least once (i.e. the number of rows in capthist).

Model weights are calculated as
exp(=Ai/2)
w; =
>_exp(—Ai/2)
, where A refers to differences in AIC or AICc depending on the argument ‘criterion’.

Models for which delta > dmax are given a weight of zero and are excluded from the summation.
Model weights may be used to form model-averaged estimates of real or beta parameters with
model. average (see also Buckland et al. 1997, Burnham and Anderson 2002).

The argument k is included for consistency with the generic method AIC.

secrlist forms a list of fitted models (an object of class ‘secrlist’) from the fitted models in
Arguments may include secrlists. If secr components are named the model names will be retained
(see Examples).

Value

A data frame with one row per model. By default, rows are sorted by ascending AICc.

model character string describing the fitted model

detectfn shape of detection function fitted (halfnormal vs hazard-rate)
npar number of parameters estimated

loglik maximized log likelihood

AIC Akaike’s Information Criterion

AICc AIC with small-sample adjustment of Hurvich & Tsai (1989)

14 AIC.secr

And depending on criterion:

dAICc difference between AICc of this model and the one with smallest AICc
AICcwt AICc model weight

or

dAIC difference between AIC of this model and the one with smallest AIC
AICwt AIC model weight

loglik.secr returns an object of class ‘logLik’ that has attribute df (degrees of freedom = number
of estimated parameters).

Note

It is not be meaningful to compare models by AIC if they relate to different data or habitat masks.
Specifically:
* an ‘secrlist’ generated and saved to file by mask . check may be supplied as the object argument
of AIC.secrlist, but the results are not informative

* models fitted by the conditional likelihood (CL = TRUE) and full likelihood (CL = FALSE)
methods cannot be compared

* hybrid mixture models (using hcov argument of secr.fit) should not be compared with other
models

* grouped models (using groups argument of secr.fit) should not be compared with other models

* multi-session models should not be compared with single-session models based on the same
data.

A likelihood-ratio test (LR. test) is a more direct way to compare two models.

The issue of goodness-of-fit and possible adjustment of AIC for overdispersion has yet to be ad-
dressed (cf QAIC in MARK).

From version 2.6.0 the user may select between AIC and AICc for comparing models, whereas
previously only AICc was used and AICc weights were reported as ‘AICwt’). There is evidence
that AIC may be better for model averaging even when samples are small sizes - Turek and Fletcher
(2012).

References

Buckland S. T., Burnham K. P. and Augustin, N. H. (1997) Model selection: an integral part of
inference. Biometrics 53, 603-618.

Burnham, K. P. and Anderson, D. R. (2002) Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach. Second edition. New York: Springer-Verlag.

Hurvich, C. M. and Tsai, C. L. (1989) Regression and time series model selection in small samples.
Biometrika 76, 297-307.

Turek, D. and Fletcher, D. (2012) Model-averaged Wald confidence intervals. Computational statis-
tics and data analysis 56, 2809-2815.

See Also

model.average, AIC, secr.fit, print.secr, score.test, LR. test, deviance.secr

as.mask 15

Examples

Compare two models fitted previously
secrdemo.@ is a null model
secrdemo.b has a learned trap response

AIC(secrdemo.@, secrdemo.b)
Form secrlist and pass to AIC.secr

temp <- secrlist(null = secrdemo.@, learnedresponse = secrdemo.b)
AIC(temp)

as.mask Coerce traps object to mask

Description

This function is used primarily for plotting covariates, for which the plot.mask function has greater
functionality than plot.traps. It also generates pretty maps of grid cells.

Usage

as.mask(x)

Arguments

X an object of class ’traps’

Details

A mask derived by coercion with as.mask may behave unpredictably e.g., in secr.fit.

Value

If x is a single-session traps object —
an object of class c("mask", "data.frame")

If x is a multi-session traps object —

non

an object of class c("list", "mask"), for which each component is a single-session mask.

See Also

make.mask, plot.mask, mask, traps

Examples

plot(as.mask(traps(captdata)), dots = FALSE, meshcol = "black")
plot(traps(captdata), add = TRUE)

16 autoini

autoini Initial Parameter Values for SECR

Description
Find plausible initial parameter values for secr.fit. A simple SECR model is fitted by a fast ad
hoc method.

Usage

autoini(capthist, mask, detectfn = @, thin = 0.2, tol = 0.001,

binomN = 1, adjustg@ = TRUE, ignoreusage = FALSE)

Arguments

capthist capthist object

mask mask object compatible with the detector layout in capthist

detectfn integer code or character string for shape of detection function 0 = halfnormal

thin proportion of points to retain in mask

tol numeric absolute tolerance for numerical root finding

binomN integer code for distribution of counts (see secr.fit)

adjustgo logical for whether to adjust g0 for usage (effort) and binomN

ignoreusage logical for whether to discard usage information from traps(capthist)
Details

Plausible starting values are needed to avoid numerical problems when fitting SECR models. Actual
models to be fitted will usually have more than the three basic parameters output by autoini;
other initial values can usually be set to zero for secr.fit. If the algorithm encounters problems
obtaining a value for g0, the default value of 0.1 is returned.

Only the halfnormal detection function is currently available in autoini (cf other options in e.g.
detectfn and sim.capthist).

autoini implements a modified version of the algorithm proposed by Efford et al. (2004). In
outline, the algorithm is
1. Find value of sigma that predicts the 2-D dispersion of individual locations (see RPSV)

2. Find value of g0 that, with sigma, predicts the observed mean number of captures per individ-
ual (by algorithm of Efford et al. (2009, Appendix 2))

3. Compute the effective sampling area from g0, sigma, using thinned mask (see esa)

4. Compute D = n/esa(g0, sigma), where n is the number of individuals detected
Here ‘find’ means solve numerically for zero difference between the observed and predicted values,
using uniroot.

If RPSV cannot be computed the algorithm tries to use observed mean recapture distance d. Com-
putation of d fails if there no recaptures, and all returned values are NA.

If the mask has more than 100 points then a proportion 1-thin of points are discarded at random to
speed execution.

autoini 17

The argument tol is passed to uniroot. It may be a vector of two values, the first for g0 and the
second for sigma.

If traps(capthist) has a usage attribute (defining effort on each occasion at each detector) then
the value of g0 is divided by the mean of the non-zero elements of usage. This adjustment is not
precise.

If adjustg® is TRUE then an adjustment is made to g0 depending on the value of binomN. For Pois-
son counts (binomN = @) the adjustment is linear on effort (adjusted.g0 = g0 / usage). Otherwise,
the adjustment is on the hazard scale (adjusted.g0 = 1 — (1 — g0) ~ (1 / (usage x binomN))). An
arithmetic average is taken over all non-zero usage values (i.e. over used detectors and times). If
usage is not specified it is taken to be 1.0.

Value

A list of parameter values :

D Density (animals per hectare)
g0 Magnitude (intercept) of detection function
sigma Spatial scale of detection function (m)

Note

autoini always uses the Euclidean distance between detectors and mask points.

113

You may get this message from secr.fit: “’autoini’ failed to find g0; setting initial g0 = 0.1”. If the
fitted model looks OK (reasonable estimates, non-missing SE) there is no reason to worry about the
starting values. If you get this message and model fitting fails then supply your own values in the
start argument of secr.fit.

References

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture—
recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217-228.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676-2682.

See Also

capthist, mask, secr.fit, dbar

Examples

demotraps <- make.grid()

demomask <- make.mask(demotraps)

demoCH <- sim.capthist (demotraps, popn = list(D = 5, buffer = 100))
autoini (demoCH, demomask)

18 BUGS

BUGS Convert Data To Or From BUGS Format

Description

Convert data between ‘capthist’ and BUGS input format.

Usage

read.DA(DAlist, detector = "polygonX", units = 1, session =1,
Y = "Y", xcoord = "U1", ycoord = "U2", xmin = "X1",
xmax = "Xu", ymin = "Y1", ymax = "Yu", buffer = "delta”,
verify = TRUE)

write.DA(capthist, buffer, nzeros = 200, units = 1)

Arguments
DAlist list containing data in BUGS format
detector character value for detector type: ‘polygon’ or ‘polygonX’
units numeric for scaling output coordinates
session numeric or character label used in output
Y character, name of binary detection history matrix (animals x occasions)
xcoord character, name of matrix of x-coordinates for each detection in Y
ycoord character, name of matrix of y-coordinates for each detection in Y
xmin character, name of coordinate of state space boundary
Xmax character, name of coordinate of state space boundary
ymin character, name of coordinate of state space boundary
ymax character, name of coordinate of state space boundary
buffer see Details
verify logical if TRUE then the resulting capthist object is checked with verify
capthist capthist object
nzeros level of data augmentation (all-zero detection histories)
Details

Data for OpenBUGS or WinBUGS called from R using the package R2ZWinBUGS (Sturtz et al.
2005) take the form of an R list.

These functions are limited at present to binary data from a square quadrat such as used by Royle
and Young (2008). Marques et al. (2011) provide an R function create.data() for generating
simulated datasets of this sort (see sim.capthist for equivalent functionality).

When reading BUGS data —

The character values Y, xcoord, ycoord, xmin etc. are used to locate the data within DAlist,
allowing for variation in the input names.

BUGS 19

The number of sampling occasions is taken from the number of columns in Y. Each value in Y should
be 0 or 1. Coordinates may be missing

A numeric value for buffer is the distance (in the original units) by which the limits X1, Xu etc.
should be shrunk to give the actual plot limits. If buffer is character then a component of DAlist
contains the required numeric value.

Coordinates in the output will be multiplied by the scalar units.

Augmentation rows corresponding to ‘all-zero’ detection histories in Y, xcoord, and ycoord are
discarded.

When writing BUGS data —

Null (all-zero) detection histories are added to the matrix of detection histories Y, and missing (NA)
rows are added to the coordinate matrices xcoord and ycoord.

Coordinates in the output will be divided by the scalar units.

Value

For read.DA, an object of class ‘capthist’.

For write.DA, a list with the components

X1 left edge of state space

Xu right edge of state space

Y1 bottom edge of state space

Yu top edge of state space

delta buffer between edge of state space and quadrat
nind number of animals observed

nzeros number of added all-zero detection histories

T number of sampling occasions

Y binary matrix of detection histories (dim = c(nind+nzeros, T))
Ul matrix of x-coordinates, dimensioned as Y

U2 matrix of y-coordinates, dimensioned as Y

Ul and U2 are ‘NA’ where animal was not detected.

References

Marques, T. A., Thomas, L. and Royle, J. A. (2011) A hierarchical model for spatial capture—
recapture data: Comment. Ecology 92, 526-528.

Royle, J. A. and Young, K. V. (2008) A hierarchical model for spatial capture—recapture data. Ecol-
ogy 89, 2281-2289.

Sturtz, S., Ligges, U. and Gelman, A. (2005) R2WinBUGS: a package for running WinBUGS from
R. Journal of Statistical Software 12, 1-16.

See Also

hornedlizardCH, verify, capthist

Examples

write.DA (hornedlizardCH, buffer = 100, units = 100)

20

In this example, the input uses X1, Xu etc.

for the limits of the plot itself, so buffer = 0.

Input is in hundreds of metres.

First, obtain the list lzdata

olddir <- setwd (system.file("extdata"”, package="secr"))
source ("lizarddata.R")

setwd(olddir)

str(lzdata)

Now convert to capthist

tempcapt <- read.DA(lzdata, Y = "H", xcoord = "X",

ycoord = "Y", buffer = @, units = 100)

#summary (tempcapt)

Not run:

plot(tempcapt)

secr.fit(tempcapt, trace = FALSE)
etc.

End(Not run)

capthist

capthist Spatial Capture History Object

Description

A capthist object encapsulates all data needed by secr. fit, except for the optional habitat mask.

Details

An object of class capthist holds spatial capture histories, detector (trap) locations, individual
covariates and other data needed for a spatially explicit capture-recapture analysis with secr.fit.

For ‘single’ and ‘multi’ detectors, capthist is a matrix with one row per animal and one column
per occasion (i.e. dim(capthist) = c(nc, noccasions)); each element is either zero (no detection) or
a detector number. For other detectors (‘proximity’, ‘count’, ‘signal’ etc.), capthist is an array of
values and dim(capthist) = c(nc, noccasions, ntraps); values maybe binary ({-1, 0, 1}) or integer
depending on the detector type.

Deaths during the experiment are represented as negative values.

Ancillary data are retained as attributes of a capthist object as follows:

traps — object of class traps (required)
session — session identifier (required)
covariates — dataframe of individual covariates (optional)

cutval — threshold of signal strength for detection (‘signal’ only)

signalframe — signal strength values etc., one row per detection (‘signal’ only)

detectedXY — dataframe of coordinates for location within polygon (‘polygon’-like detectors

only)

xylist — coordinates of telemetered animals

Tu — detectors x occasions matrix of sightings of unmarked animals

capthist.parts 21

* Tm — detectors x occasions matrix of sightings of marked but unidentified animals

* Tn — detectors x occasions matrix of sightings with unknown mark status

read.capthist is adequate for most data input. Alternatively, the parts of a capthist object can
be assembled with the function make.capthist. Use sim.capthist for Monte Carlo simulation
(simple models only). Methods are provided to display and manipulate capthist objects (print,
summary, plot, rbind, subset, reduce) and to extract and replace attributes (covariates, traps, Xy).

A multi-session capthist object is a list in which each component is a capthist for a single ses-
sion. The list maybe derived directly from multi-session input in Density format, or by combining
existing capthist objects with MS. capthist.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture—recapture studies. Biometrics 64, 377-385.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255-269.

See Also

traps, secr.fit, read.capthist, make.capthist, sim.capthist, subset.capthist, rbind.capthist,
MS.capthist, reduce.capthist, mask

capthist.parts Dissect Spatial Capture History Object

Description

Extract parts of an object of class ‘capthist’.

Usage

animalID(object, names = TRUE)

occasion(object)

trap(object, names = TRUE)
alive(object)
alongtransect(object, tol = 0.01)
xy(object)

xy(object) <- value

telemetryxy(object, includeNULL = FALSE)
telemetryxy(object) <- value
telemetered(object)

22 capthist.parts

Arguments
object a ‘capthist’ object
names if FALSE the values returned are numeric indices rather than names
tol tolerance for snapping to transect line (m)
value replacement value (see Details)

includeNULL logical; if TRUE a NULL component is included for untelemetered animals

Details

These functions extract data on detections, ignoring occasions when an animal was not detected.
Detections are ordered by occasion, animallD and trap.

trap returns polygon or transect numbers if traps(object) has detector type ‘polygon’ or ‘tran-
sect’.

alongtransect returns the distance of each detection from the start of the transect with which it is
associated.

Replacement values must precisely match object in number of detections and in their order. xy<-
expects a dataframe of x and y coordinates for points of detection within a ‘polygon’ or ‘transect’
detector. telemetryxy<- expects a list of dataframes, one per telemetered animal.

Value

For animalID and trap a vector of numeric or character values, one per detection.
For alive a vector of logical values, one per detection.

For occasion, a vector of numeric values, one per detection.

For xy, a dataframe with one row per detection and columns ‘x’ and ‘y’.

If object has multiple sessions, the result is a list with one component per session.

See Also

capthist, polyID, signalmatrix

Examples

‘captdata' is a demonstration dataset
animalID(captdata)

temp <- sim.capthist(popn = list(D = 1), make.grid(detector
= "count"))

cbind(ID = as.numeric(animalID(temp)), occ = occasion(temp),
trap = trap(temp))

circular 23

circular Circular Probability

Description

Functions to answer the question "what radius is expected to include proportion p of points from a
circular bivariate distribution corresponding to a given detection function”, and the reverse. These
functions may be used to relate the scale parameter(s) of a detection function (e.g.,) to home-
range area (specifically, the area within an activity contour for the corresponding simple home-range
model) (see Note).

WARNING: the default behaviour of these functions changed in version 2.6.0. Integration is now
performed on the cumulative hazard (exposure) scale for all functions unless hazard = FALSE.
Results will differ.

Usage

circular.r (p = 0.95, detectfn = @, sigma = 1, detectpar = NULL, hazard
= TRUE, ...)

circular.p (r = 1, detectfn = @, sigma = 1, detectpar = NULL, hazard

= TRUE, ...)
Arguments
p vector of probability levels for which radius is required
r vector of radii for which probability level is required
detectfn integer code or character string for shape of detection function 0 = halfnormal,
2 = exponential etc. — see detectfn for other codes
sigma spatial scale parameter of detection function
detectpar named list of detection function parameters
hazard logical; if TRUE the transformation —log(1— g(d)) is applied before integration
other arguments passed to integrate
Details

circular.r is the quantile function of the specified circular bivariate distribution (analogous to
gnorm, for example). The quantity calculated by circular.r is sometimes called ‘circular error
probable’ (see Note).

For detection functions with two parameters (intercept and scale) it is enough to provide sigma.
Otherwise, detectpar should be a named list including parameter values for the requested detection
function (g0 may be omitted, and order does not matter).

Detection functions in secr are expressed in terms of the decline in probability of detection with
distance g(d), and both circular.r and circular.p integrate this function by default. Rather
than integrating g(d) itself, it may be more appropriate to integrate g(d) transformed to a hazard i.e.
1 —log(—g(d)). This is selected with hazard = TRUE.

Integration may fail with the message "maximum number of subdivisions reached". See Examples
for how to increase the number of subdivisions.

24 circular

Value

Vector of values for the required radii or probabilities.

Note

The term ‘circular error probable’ has a military origin. It is commonly used for GPS accuracy
with the default probability level set to 0.5 (i.e. half of locations are further than CEP from the
true location). A circular bivariate normal distriubution is commonly assumed for the circular error
probable; this is equivalent to setting detectfn = "halfnormal”.

Closed-form expressions are used for the normal and uniform cases; in the circular bivariate normal
case, the relationship is » = o1/—2In(1 — p). Otherwise, the probability is computed numerically
by integrating the radial distribution. Numerical integration is not foolproof, so check suspicious or
extreme values.

When circular.r is used with the default sigma = 1, the result may be interpreted as the factor
by which sigma needs to be inflated to include the desired proportion of activity (e.g., 2.45 sigma
for 95% of points from a circular bivariate normal distribution fitted on the hazard scale (detectfn =
14) OR 2.24 sigma on the probability scale (detectfn = 0)).

References

Calhoun, J. B. and Casby, J. U. (1958) Calculation of home range and density of small mammals.
Public Health Monograph No. 55. United States Government Printing Office.

Johnson, R. A. and Wichern, D. W. (1982) Applied multivariate statistical analysis. Prentice-Hall,
Englewood Cliffs, New Jersey, USA.

See Also

detectfn, detectfnplot

Examples

Calhoun and Casby (1958) p 3.
give p = 0.3940, 0.8645, 0.9888
circular.p(1:3)

halfnormal, hazard-rate and exponential
circular.r

circular.r (detectfn = "HR", detectpar = list(sigma = 1, z = 4))
circular.r (detectfn = "EX")
circular.r (detectfn = "HHN")
circular.r (detectfn = "HHR", detectpar = list(sigma =1, z = 4))
circular.r (detectfn = "HEX")

plot(seq(@, 5, 0.01), circular.p(r = seq(@, 5, 0.01)),
type = "1", xlab = "Radius (multiples of sigma)"”, ylab = "Probability")
lines(seq(@, 5, ©.01), circular.p(r = seq(@, 5, 0.01), detectfn = 2),
type = "1", col = "red")
lines(seq(@, 5, 0.01), circular.p(r = seq(@, 5, 0.01), detectfn =1,
detectpar = list(sigma = 1,z = 4)), type = "1", col = "blue")
abline (h = 0.95, 1ty = 2)

legend (2.8, 0.3, legend = c("halfnormal”,"hazard-rate, z = 4", "exponential”),
col = c("black”,"blue”,"red"”), 1ty = rep(1,3))

clone

in this example, a more interesting comparison would use
sigma = 0.58 for the exponential curve.

25

clone Replicate Rows

Description

Clone rows of an object a constant or random number of times

Usage
Default S3 method:
clone(object, type, ...)
S3 method for class 'popn'
clone(object, type, ...)
S3 method for class 'capthist'
clone(object, type, ...)
Arguments
object any object
type character ’constant’, *poisson’ or 'nbinom’

other arguments for distribution function

Details

The . ..argument specifies the number of times each row should be repeated. For random distribu-
tions (Poisson or negative binomial) . . . provides the required parameter values: 1ambda for Poisson,

size, prob or size, mu for negative binomial.

One application is to derive a population of cues from a popn object, where each animal in the

original popn generates a number of cues from the same point.

Cloning a capthist object replicates whole detection histories. Individual covariates and detection-
specific attributes (e.g., signal strength or xy location in polygon) are also replicated. Cloned data
from single-catch traps will cause verify() to fail, but a model may still be fitted in secr.fit by

overriding the check with verify = FALSE.

Value

Object of same class as object but with varying number of rows. For clone.popn and capthist
an attribute ‘freq’ is set, a vector of length equal to the original number of rows giving the number

of repeats (including zeros).

If popn or capthist is a multi-session object the returned value will be a multi-session object of

the same length.

See Also

sim.popn

26 closedN

Examples

population of animals at 1 / hectare generates random

Poisson number of cues, lambda = 5

mics4 <- make.grid(nx = 2, ny = 2, spacing = 44, detector = "signal")
pop <- sim.popn (D = 1, core = mics4, buffer = 300, nsessions = 66)
pop <- clone (pop, "poisson”, 5)

attr(pop[[1]1],"freq")

clone(captdata, "poisson”, 3)

closedN Closed population estimates

Description

Estimate N, the size of a closed population, by several conventional non-spatial capture-recapture
methods.

Usage

closedN(object, estimator = NULL, level = 0.95, maxN = 1e+07,

dmax = 10)
Arguments
object capthist object
estimator character; name of estimator (see Details)
level confidence level (1 — alpha)
maxN upper bound for population size
dmax numeric, the maximum AIC difference for inclusion in confidence set

Details

Data are provided as spatial capture histories, but the spatial information (trapping locations) is
ignored.

AIC-based model selection is available for the maximum-likelihood estimators null, zippin, darroch,
h2, and betabinomial.

Model weights are calculated as
W exp(—A;/2)
T Y exp(—Ai/2)

Models for which dAICc > dmax are given a weight of zero and are excluded from the summation,
as are non-likelihood models.

Computation of null, zippin and darroch estimates differs slightly from Otis et al. (1978) in
that the likelihood is maximized over real values of N between Mt1 and maxN, whereas Otis et al.
considered only integer values.

closedN 27

Asymmetric confidence intervals are obtained in the same way for all estimators, using a log trans-
formation of N — M1 following Burnham et al. (1987), Chao (1987) and Rexstad and Burnham
(1991).

The available estimators are

Description

null

removal

Darroch

2-part finite mixture
Beta-binomial continuous mixture
jackknife

Chao’s Mh estimator

Chao’s modified Mh estimator
sample coverage estimator 1
sample coverage estimator 2

A dataframe with one row per estimator and columns

model in the sense of Otis et al. 1978

number of parameters estimated

maximized log likelihood

Akaike’s information criterion

closedN

Reference

Otis et al. 1978 p.105
Otis et al. 1978 p.108
Otis et al. 1978 p.106-7
Pledger 2000

Dorazio and Royle 2003
Burnham and Overton 1978
Chao 1987

Chao 1987

Lee and Chao 1994

Lee and Chao 1994

AIC with small-sample adjustment of Hurvich & Tsai (1989)

difference between AICc of this model and the one with smallest AICc

number of distinct individuals caught

estimate of population size

estimated standard error of Nhat

lower 100 x level % confidence limit

upper 100 x level % confidence limit

If your data are from spatial sampling (e.g. grid trapping) it is recommended that you do not use
these methods to estimate population size (see Efford and Fewster 2013). Instead, fit a spatial model
and estimate population size with region.N.

Prof. Anne Chao generously allowed me to adapt her code for the variance of the ‘chao.thl’ and

Chao’s estimators have been subject to various improvements not included here; please see Chao

28
Name Model
null MO
zippin Mb
darroch Mt
h2 Mh
betabinomial Mh
jackknife Mh
chao Mh
chaomod Mh
chao.thl Mth
chao.th2 Mth
Value
model
npar
loglik
AIC
AICc
dAICc
Mt1
Nhat
seNhat
1clNhat
uclNhat
Warning
Note
‘chao.th2’ estimators.
and Shen (2010) for details.
References

Burnham, K. P. and Overton, W. S. (1978) Estimating the size of a closed population when capture
probabilities vary among animals. Biometrika 65, 625-633.

Chao, A. (1987) Estimating the population size for capture-recapture data with unequal catchability.
Biometrics 43, 783-791.

Chao, A. and Shen, T.-J. (2010) Program SPADE (Species Prediction And Diversity Estimation).
Program and User’s Guide available online at http://chao.stat.nthu.edu. tw.

http://chao.stat.nthu.edu.tw

closure.test 29

Dorazio, R. M. and Royle, J. A. (2003) Mixture models for estimating the size of a closed population
when capture rates vary among individuals. Biometrics 59, 351-364.

Efford, M. G. and Fewster, R. M. (2013) Estimating population size by spatially explicit capture—
recapture. Oikos 122, 918-928.

Hurvich, C. M. and Tsai, C. L. (1989) Regression and time series model selection in small samples.
Biometrika 76, 297-307.

Lee, S.-M. and Chao, A. (1994) Estimating population size via sample coverage for closed capture-
recapture models. Biometrics 50, 88-97.

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62, 1-135.

Pledger, S. (2000) Unified maximum likelihood estimates for closed capture-recapture models using
mixtures. Biometrics 56, 434—442.

Rexstad, E. and Burnham, K. (1991) User’s guide for interactive program CAPTURE. Colorado
Cooperative Fish and Wildlife Research Unit, Fort Collins, Colorado, USA.

See Also

capthist, closure. test, region.N

Examples

closedN(deermouse.ESG)

closure.test Closure tests

Description

Perform tests to determine whether a population sampled by capture-recapture is closed to gains
and losses over the period of sampling.

Usage

closure.test(object, SB = FALSE, min.expected = 2)

Arguments
object capthist object
SB logical, if TRUE then test of Stanley and Burnham 1999 is calculated in addition

to that of Otis et al. 1978

min.expected integer for the minimum expected count in any cell of a component 2x2 table

Details

The test of Stanley and Burnham in part uses a sum over 2x2 contingency tables; any table with a
cell whose expected count is less than min.expected is dropped from the sum. The default value of
2 is that used by CloseTest (Stanley and Richards 2005, T. Stanley pers. comm.; see also Stanley
and Burnham 1999 p. 203).

30

Value

closure.test

In the case of a single-session capthist object, either a vector with the statistic (z-value) and p-value
for the test of Otis et al. (1978 p. 120) or a list whose components are data frames with the statistics
and p-values for various tests and test components as follows —

Otis

Xc

NRvsJS
NMvsJS
MtvsNR
MtvsNM
compNRvsJS
compNMvsJS

Test of Otis et al. 1978

Overall test of Stanley and Burnham 1999
Stanley and Burnham 1999

Stanley and Burnham 1999

Stanley and Burnham 1999

Stanley and Burnham 1999
Occasion-specific components of NRvsJS

Occasion-specific components of NMvsJS

Check the original papers for an explanation of the components of the Stanley and Burnham test.

In the case of a multi-session object, a list with one component (as above) for each session.

Note

No omnibus test exists for closure: the existing tests may indicate nonclosure even when a popu-
lation is closed if other effects such as trap response are present (see White et al. 1982 pp 96-97).
The test of Stanley and Burnham is sensitive to individual heterogeneity which is inevitable in most
spatial sampling, and it should not in general be used for this sort of data.

References

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62, 1-135.

Stanley, T. R. and Burnham, K. P. (1999) A closure test for time-specific capture-recapture data.
Environmental and Ecological Statistics 6, 197-209.

Stanley, T. R. and Richards, J. D. (2005) A program for testing capture-recapture data for closure.
Wildlife Society Bulletin 33, 782-785.

White, G. C., Anderson, D. R., Burnham, K. P. and Otis, D. L. (1982) Capture-recapture and
removal methods for sampling closed populations. Los Alamos National Laboratory, Los Alamos,

New Mexico.

See Also

capthist

Examples

closure.test(captdata)

cluster 31

cluster Detector Clustering

Description

Clusters are uniform groups of detectors. Use these functions to extract or replace cluster informa-
tion of a traps object, or extract cluster information for each detection in a capthist object.

Usage

clusterID(object)
clusterID(object) <- value
clustertrap(object)
clustertrap(object) <- value

Arguments

object traps or capthist object

value factor (clusterID) or integer-valued vector (clustertrap)
Details

Easy access to attributes used to define compound designs, those in which a detector array comprises
several similar subunits (‘clusters’). ‘clusterID’ identifies the detectors belonging to each cluster,
and ‘clustertrap’ is a numeric index used to relate matching detectors in different clusters.

For replacement (‘traps’ only), the number of rows of value must match exactly the number of
detectors in object.

‘clusterID’ and ‘clustertrap’ are assigned automatically by trap.builder.

Value

Factor (clusterID) or integer-valued vector (clustertrap).
clusterID(object) may be NULL.

See Also

traps, trap.builder, mash, derived.cluster, cluster.counts, cluster.centres

Examples

81 4-detector clusters

mini <- make.grid(nx = 2, ny = 2)

tempgrid <- trap.builder (cluster = mini , method "all”,
frame = expand.grid(x = seq(100, 900, 100), y = seq(100,
900, 100)))

clusterID(tempgrid)

clustertrap(tempgrid)

tempCH <- sim.capthist(tempgrid)
table(clusterID(tempCH)) ## detections per cluster
cluster.counts(tempCH) ## distinct individuals

32 confint.secr

coef.secr Coefficients of secr Object

Description

Extract coefficients (estimated beta parameters) from a spatially explicit capture—recapture model.

Usage
S3 method for class 'secr'
coef(object, alpha = 0.05, ...)
Arguments
object secr object output from secr.fit
alpha alpha level

other arguments (not used currently)

Value

A data frame with one row per beta parameter and columns for the coefficient, SE(coefficient),
asymptotic lower and upper 100(1-alpha) confidence limits.

See Also

secr.fit, esa.plot

Examples

load & extract coefficients of previously fitted null model
coef (secrdemo.)

confint.secr Profile Likelihood Confidence Intervals

Description

Compute profile likelihood confidence intervals for ‘beta’ or ‘real’ parameters of a spatially explicit
capture-recapture model,

Usage

S3 method for class 'secr'
confint(object, parm, level = 0.95, newdata = NULL,
tracelevel = 1, tol = 0.0001, bounds = NULL, ...)

confint.secr 33

Arguments
object secr model object
parm numeric or character vector of parameters
level confidence level (1 — alpha)
newdata optional dataframe of values at which to evaluate model
tracelevel integer for level of detail in reporting (0,1,2)
tol absolute tolerance (passed to uniroot)
bounds numeric vector of outer starting values — optional
other arguments (not used)
Details

If parm is numeric its elements are interpreted as the indices of ‘beta’ parameters; character values
are interpreted as ‘real’ parameters. Different methods are used for beta parameters and real param-
eters. Limits for the j-th beta parameter are found by a numerical search for the value satisfying
—2(1;(B;) — 1) = g, where [is the maximized log likelihood, {;(f;) is the maximized profile log
likelihood with 3; fixed, and g is the 100(1 —) quantile of the x? distribution with one degree of
freedom. Limits for real parameters use the method of Lagrange multipliers (Fletcher and Faddy
2007), except that limits for constant real parameters are backtransformed from the limits for the
relevant beta parameter.

If bounds is provided it should be a 2-vector or matrix of 2 columns and length(parm) rows.

Value

A matrix with one row for each parameter in parm, and columns giving the lower (Icl) and upper
(ucl) 100*1evel

Note

Calculation may take a long time, so probably you will do it only after selecting a final model.

The R function uniroot is used to search for the roots of —2(l;(5;) —) = ¢ within a suitable
interval. The interval is anchored at one end by the MLE, and at the other end by the MLE inflated
by a small multiple of the asymptotic standard error (1, 2, 4 or 8 SE are tried in turn, using the
smallest for which the interval includes a valid solution).

A more efficient algorithm was proposed by Venzon and Moolgavkar (1988); it has yet to be imple-
mented in secr, but see plkhci in the package Bhat for another R implementation.

References

Evans, M. A., Kim, H.-M. and O’Brien, T. E. (1996) An application of profile-likelihood based
confidence interval to capture-recapture estimators. Journal of Agricultural, Biological and Exper-
imental Statistics 1, 131-140.

Fletcher, D. and Faddy, M. (2007) Confidence intervals for expected abundance of rare species.
Journal of Agricultural, Biological and Experimental Statistics 12, 315-324.

Venzon, D. J. and Moolgavkar, S. H. (1988) A method for computing profile-likelihood-based con-
fidence intervals. Applied Statistics 37, 87-94.

34 contour

Examples

Not run:
Limits for the constant real parameter "D"
confint(secrdemo.@, "D")

End(Not run)

contour Contour Detection Probability

Description

Display contours of the net probability of detection p.(X), or the area within a specified distance of
detectors. buffer.contour adds a conventional ‘boundary strip’ to a detector (trap) array, where
buffer equals the strip width.

Usage

pdot.contour(traps, border = NULL, nx = 64, detectfn = 0,
detectpar = list(g0d = 0.2, sigma = 25, z = 1), noccasions = NULL,
binomN = NULL, levels = seq(@.1, 0.9, 0.1), poly =
NULL, plt = TRUE, add FALSE, fill = NULL, ...)

buffer.contour(traps, buffer, nx = 64, convex = FALSE, ntheta = 100,

plt = TRUE, add = FALSE, poly = NULL, fill = NULL, ...)
Arguments
traps traps object (or mask for buffer.contour)
border width of blank margin around the outermost detectors
nx dimension of interpolation grid in x-direction
detectfn integer code or character string for shape of detection function 0 = halfnormal

etc. — see detectfn

detectpar list of values for named parameters of detection function
noccasions number of sampling occasions

binomN integer code for discrete distribution (see secr.fit)
levels vector of levels for p.(X)

poly matrix of two columns, the x and y coordinates of a bounding polygon (optional)
plt logical to plot contours

add logical to add contour(s) to an existing plot

fill vector of colours to fill contours (optional)

e other arguments to pass to contour

buffer vector of buffer widths

convex logical, if TRUE the plotted contour(s) will be convex
ntheta integer value for smoothness of convex contours

contour 35

Details
pdot.contour constructs a rectangular mask and applies pdot to compute the p.(X) at each mask
point.

If convex = FALSE, buffer.contour constructs a mask and contours the points on the basis of
distance to the nearest detector at the levels given in buffer.

If convex = TRUE, buffer.contour constructs a set of potential vertices by adding points on a
circle of radius = buffer to each detector location; the desired contour is the convex hull of these
points (this algorithm derives from Efford, 2012).

If traps has a usage attribute then noccasions is set accordingly; otherwise it must be provided.

If traps is for multiple sessions then detectpar should be a list of the same length, one component
per session, and noccasions may be a numeric vector of the same length.

Increase nx for smoother lines, at the expense of speed.

Value

Coordinates of the plotted contours are returned as a list with one component per polygon. The list
is returned invisibly if plt = TRUE.

For multi-session input (traps) the value is a list of such lists, one per session.

Note
The precision (smoothness) of the fitted line in buffer.contour is controlled by ntheta rather
than nx when convex = TRUE.
To suppress contour labels, include the argument drawlabels = FALSE (this will be passed via

...to contour). Other useful arguments of contour are col (colour of contour lines) and 1wd (line
width).

You may wish to consider function gBuffer in package rgeos as an alternative to buffer.contour..

buffer.contour failed with multi-session traps before secr 2.8.0.

References

Efford, M. G. (2012) DENSITY 5.0: software for spatially explicit capture—recapture. Department
of Mathematics and Statistics, University of Otago, Dunedin, New Zealand http://www.otago.
ac.nz/density.

See Also

pdot, make.mask

Examples

possumtraps <- traps(possumCH)

plot(possumtraps, border = 270)

pdot.contour(possumtraps, detectfn = @, nx = 128, detectpar =
detectpar(possum.model.@), levels = c(0.1, 0.01, 0.001),
noccasions = 5, add = TRUE)

convex and concave buffers
plot(possumtraps, border = 270)

http://www.otago.ac.nz/density
http://www.otago.ac.nz/density

36

buffer.contour(possumtraps, buffer = 100, add = TRUE, col = "blue")
buffer.contour(possumtraps, buffer = 100, convex = TRUE, add = TRUE)

areas

buff.concave <- buffer.contour(possumtraps, buffer = 100,
plt = FALSE)

buff.convex <- buffer.contour(possumtraps, buffer = 100,

plt = FALSE, convex = TRUE)
sum (sapply(buff.concave, polyarea)) ## sum over parts
sapply (buff.convex, polyarea)

effect of nx on area

buff.concave2 <- buffer.contour(possumtraps, buffer = 100,

nx = 128, plt = FALSE)
sum (sapply(buff.concave2, polyarea))

Not run:

clipping to polygon

olddir <- setwd(system.file("extdata”, package = "secr"))
possumtraps <- traps(possumCH)

possumarea <- read.table("possumarea.txt”, header = TRUE)
par(xpd = TRUE, mar = c(1,6,6,6))

plot(possumtraps, border = 400, gridlines = FALSE)

pdot.contour(possumtraps, detectfn = @, nx = 256, detectpar
detectpar(possum.model.@), levels = c(0.1, .01, 0.001),
noccasions = 5, add = TRUE, poly = possumarea, col = "blue")

lines(possumarea)
setwd(olddir)

par(xpd = FALSE, mar = c(5,4,4,2) + 0.1) ## reset to default

End(Not run)

covariates

covariates Covariates Attribute

Description

Extract or replace covariates

Usage

Arguments
object an object of class traps, popn, capthist, or mask
value a dataframe of covariates

covariates(object, ...)
covariates(object) <- value

other arguments (not used)

cv 37

Details

For replacement, the number of rows of value must match exactly the number of rows in object.

Value

covariates(object) returns the dataframe of covariates associated with object. covariates(object)
may be NULL.

Individual covariates are stored in the ‘covariates’ attribute of a capthist object.
Covariates used for modelling density are stored in the ‘covariates’ attribute of a mask object.

Detector covariates may vary between sampling occasions. In this case, columns in the detec-
tor covariates data.frame are associated with particular times; the matching is controlled by the
timevaryingcov attribute.

See Also

timevaryingcov

Examples

detector covariates

temptrap <- make.grid(nx = 6, ny = 8)

covariates (temptrap) <- data.frame(halfnhalf =
factor(rep(c("left”,"right"),c(24,24))))

summary (covariates(temptrap))

cv Coefficient of Variation

Description

The coefficient of variation of effective sampling area predicts the bias in estimated density (Efford
and Mowat 2014). These functions assist its calculation from fitted finite mixture models.

Usage

CV(x, p, na.rm = FALSE)

CVa@(object, ...)
CVa(object, sessnum = 1, ...)
Arguments
X vector of numeric values
p vector of class probabilities
na.rm logical; if TRUE missing values are dropped from x
object fitted secr finite mixture model
sessnum integer sequence number of session to analyse

other arguments passed to predict.secr (e.g., newdata)

38 D.designdata

Details

CV computes the coefficient of variation of x. If p is provided then the distribution is assumed to be
discrete, with support x and class membership probabilities p (scaled automatically to sum to 1.0).

CVa computes CV(a) where a is the effective sampling area of Borchers and Efford (2008).

CVa®@ computes CV(a0) where a0 is the single-detector sampling area defined as ag = 27 A\go>
(Efford and Mowat 2014); a0 is a convenient surrogate for a, the effective sampling area. CV(a0)
uses either the fitted MLE of a0 (if the a0 parameterization has been used), or a0 computed from
the estimates of lambda0 and sigma.

CVa and CVa® do not work for models with individual covariates.

Value

Numeric

Note

Do not confuse the function CVa with the estimated relative standard error of the estimate of a from
derived, also labelled CVa in the output. The relative standard error RSE is often labelled CV in
the literature on capture—recapture, but this is better avoided.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture-recapture studies. Biometrics 64, 377-385.

Efford, M. G. and Mowat, G. (2014) Compensatory heterogeneity in capture—recapture data. Ecol-
ogy 95, 1341-1348.

See Also

details
Examples

housemouse model
CVa@(morning.h2)

D.designdata Construct Density Design Data

Description

Internal function used by secr.fit, confint.secr, and score. test.

Usage

D.designdata (mask, Dmodel, grouplevels, sessionlevels, sessioncov =
NULL, meanSD = NULL)

deermouse 39

Arguments
mask mask object.
Dmodel formula for density model
grouplevels vector of group names

sessionlevels vector of character values for session names

sessioncov optional dataframe of values of session-specific covariate(s).
meanSD optional external values for scaling x- and y- coordinates
Details

This is an internal secr function that you are unlikely ever to use. Unlike secr.design.MS, this
function does not call model .matrix.

Value

Dataframe with one row for each combination of mask point, group and session. Conceptually, we
use a 3-D rectangular array with enough rows to accommodate the largest mask, so some rows in
the output may merely hold space to enable easy indexing. The dataframe has an attribute ‘dimD’
that gives the relevant dimensions: attr(dframe, "dimD") = c(nmask, ngrp, R), where
nmask is the number of mask points, ngrp is the number of groups, and R is the number of sessions.
Columns correspond to predictor variables in Dmodel.

The number of valid rows (points in each session-specific mask) is stored in the attribute ‘valid-
MaskRows’.

For a single-session mask, meanSD is a 2 x 2 matrix of mean and SD (rows) for x- and y-coordinates.
For a multi-session mask, a list of such objects. Ordinarily these values are from the meanSD
attribute of the mask, but they must be specified when applying a new mask to an existing model.

See Also

secr.design.MS

deermouse Deermouse Live-trapping Datasets

Description

Data of V. H. Reid from live trapping of deermice (Peromyscus maniculatus) at two sites in Col-
orado, USA.

Usage

deermouse

40 deermouse

Details

Two datasets of V. H. Reid were described by Otis et al. (1978) and distributed with their CAP-
TURE software (now available from http://www.mbr-pwrc.usgs.gov/software.html). They
have been used in several other papers on closed population methods (e.g., Huggins 1991, Stanley
and Richards 2005). This description is based on pages 32 and 87-93 of Otis et al. (1978).

Both datasets are from studies in Rio Blanco County, Colorado, in the summer of 1975. Trapping
was for 6 consecutive nights. Traps were arranged in a 9 x 11 grid and spaced 50 feet (15.2 m)
apart.

The first dataset was described by Otis et al. (1978: 32) as from ‘a drainage bottom of sagebrush,
gambel oak, and serviceberry with pinyon pine and juniper on the uplands’. By matching with the
‘examples’ file of CAPTURE this was from East Stuart Gulch (ESG).

The second dataset (Otis et al. 1978: 87) was from Wet Swizer Creek or Gulch (WSG) in August
1975. No specific vegetation description is given for this site, but it is stated that Sherman traps
were used and trapping was done twice daily.

Two minor inconsistencies should be noted. Although Otis et al. (1978) said they used data from
morning trap clearances, the capture histories in ‘examples’ from CAPTURE include a ‘pm’ tag
on each record. We assume the error was in the text description, as their numerical results can be
reproduced from the data file. Huggins (1991) reproduced the East Stuart Gulch dataset (omitting
spatial data that were not relevant to his method), but omitted two capture histories.

The data are provided as two single-session capthist objects ‘deermouse.ESG’ and ‘deermouse. WSG’.
Each has a dataframe of individual covariates, but the fields differ between the two study areas. The
individual covariates of deermouse.ESG are sex (factor levels ‘f’, ‘m’), age class (factor levels ‘y’,

Can? $n°

sa’, ‘a’) and body weight in grams. The individual covariates of deermouse.WSG are sex (factor

levels ‘£”,‘m’) and age class (factor levels j°, ‘y’, ‘sa’, ‘a’) (no data on body weight). The aging
criteria used by Reid are not recorded.

The datasets were originally in the CAPTURE ‘xy complete’ format which for each detection gives
the ‘column’ and ‘row’ numbers of the trap (e.g. * 9 5’ for a capture in the trap at position (x=9,
y=5) on the grid). Trap identifiers have been recoded as strings with no spaces by inserting zeros
(e.g. ‘905’ in this example).

Sherman traps are designed to capture one animal at a time, but the data include double captures (1
at ESG and 8 at WSG — see Examples). The true detector type therefore falls between ‘single’ and
‘multi’. Detector type is set to ‘multi’ in the distributed data objects.

Some fitted secr models are included (ESG.0, ESG.b, ESG.t, ESG.h2, WSG.0, WSG.b, WSGt.t,
WSG.h2, each with the indicated effect on g0). Otis et al. (1978) draw attention to the tendency
of Peromyscus to become ‘trap happy’, and we observe that models with a behavioural response
(ESG.b, WSG.b) have the lowest AIC among those fitted here.

Object Description
deermouse.ESG capthist object, East Stuart Gulch
deermouse. WSG capthist object, Wet Swizer Gulch

ESG.0 fitted secr model — ESG null

ESG.b fitted secr model — ESG trap response g0
ESG.h2 fitted secr model — ESG finite mixture g0
ESG.t fitted secr model — ESG time-varying g0
WSG.0 fitted secr model — WSG null

WSG.b fitted secr model — WSG trap response g0
WSG.h2 fitted secr model — WSG finite mixture g0

WSG.t fitted secr model — WSG time-varying g0

http://www.mbr-pwrc.usgs.gov/software.html

deleteMaskPoints 41

Source

File ‘examples’ distributed with program CAPTURE.

References

Huggins, R. M. (1991) Some practical aspects of a conditional likelihood approach to capture ex-
periments. Biometrics 47, 725-732.

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62, 1-135.

Stanley, T. R. and Richards, J. D. (2005) A program for testing capture-recapture data for closure.
Wildlife Society Bulletin 33, 782-785.

See Also

closure.test

Examples

par(mfrow = c(1,2), mar = c(1,1,4,1))

plot(deermouse.ESG, title = "Peromyscus data from East Stuart Gulch”,
border = 10, gridlines = FALSE, tracks = TRUE)

plot(deermouse.WSG, title = "Peromyscus data from Wet Swizer Gulch”,
border = 10, gridlines = FALSE, tracks = TRUE)

closure.test(deermouse.ESG, SB = TRUE)
reveal multiple captures

table(trap(deermouse.ESG), occasion(deermouse.ESG))
table(trap(deermouse.WSG), occasion(deermouse.WSG))

deleteMaskPoints Edit Mask Points

Description

Mask points may be removed by one of three methods: clicking on points, clicking on vertices to
define a polygon from which points will be removed, or specifying a polygon to which the mask
will be clipped.

Usage

deleteMaskPoints(mask, onebyone = TRUE, add = FALSE, poly = NULL,
poly.habitat = FALSE, ...)

42 deleteMaskPoints
Arguments

mask secr mask object

onebyone logical; see Details

add logical; if true then the initial mask plot will be added to an existing plot

poly polygon defining habitat or non-habitat as described in make . mask

poly.habitat logical; if TRUE polygon represents habitat

other arguments to plot.mask

Details

The default method (onebyone = TRUE, poly = NULL) is to click on each point to be removed.
The nearest mask point will be selected.

Setting onebyone = FALSE allows the user to click on the vertices of a polygon within which all
points are to be removed (the default) or retained (poly.habitat = TRUE). Vertices need not
coincide with mask points.

Defining poly here is equivalent to calling make.mask with poly defined. poly may be a Spa-
tialPolygonsDataFrame from sp, possibly imported from a polygon shapefile with rgdal: : readOGR.
Whether poly represents habitat or non-habitat is toggled with poly.habitat — the default here
differs from make . mask.

Value

A mask object, usually with fewer points than the input mask.

See Also

make.mask, subset.mask

Examples

Not run:

mask@® <- make.mask (traps(captdata))

Method 1 - click on each point to remove

mask1l <- deleteMaskPoints (mask®)

Method 2 - click on vertices of removal polygon
mask2 <- deleteMaskPoints (mask@, onebyone = FALSE)
Method 3 - predefined removal polygon
plot(captdata)

poly1l <- locator(5)

mask3 <- deleteMaskPoints (mask@, poly = polyl)

End(Not run)

derived 43

derived Derived Parameters of Fitted SECR Model

Description

Compute derived parameters of spatially explicit capture-recapture model. Density is a derived
parameter when a model is fitted by maximizing the conditional likelihood. So also is the effective
sampling area (in the sense of Borchers and Efford 2008).

Usage

derived(object, sessnum = NULL, groups = NULL, alpha = 0.05,
se.esa = FALSE, se.D = TRUE, loginterval = TRUE,
distribution = NULL, ncores = 1)
esa(object, sessnum = 1, beta = NULL, real = NULL, noccasions = NULL)

Arguments
object secr object output from secr. fit, oran objectof class c("list"”, "secrlist”)
sessnum index of session in object$capthist for which output required
groups vector of covariate names to define group(s) (see Details)
alpha alpha level for confidence intervals
se.esa logical for whether to calculate SE(mean(esa))
se.D logical for whether to calculate SE(D-hat)
loginterval logical for whether to base interval on log(D)

distribution character string for distribution of the number of individuals detected

ncores integer number of cores available for parallel processing

beta vector of fitted parameters on transformed (link) scale

real vector of ‘real’ parameters

noccasions integer number of sampling occasions (see Details)
Details

The derived estimate of density is a Horvitz-Thompson-like estimate:
D=> ai(6)"
i=1

where ai(é) is the estimate of effective sampling area for animal 7 with detection parameter vector
0.

A non-null value of the argument distribution overrides the value in object$details. The sam-
pling variance of D from secr.fit by default is spatially unconditional (distribution = "Poisson”).
For sampling variance conditional on the population of the habitat mask (and therefore dependent

on the mask area), specify distribution = "binomial”. The equation for the conditional vari-
ance includes a factor (1 — a/A) that disappears in the unconditional (Poisson) variance (Borchers
and Efford 2007). Thus the conditional variance is always less than the unconditional variance. The
unconditional variance may in turn be an overestimate or (more likely) an underestimate if the true
spatial variance is non-Poisson.

44

derived

Derived parameters may be estimated for population subclasses (groups) defined by the user with
the groups argument. Each named factor in groups should appear in the covariates dataframe of
object$capthist (or each of its components, in the case of a multi-session dataset).

esa is used by derived to compute individual-specific effective sampling areas:
a;(0) = / p.(X;z;,0) dX
A

where p.(X) is the probability an individual at X is detected at least once and the z; are optional
individual covariates. Integration is over the area A of the habitat mask.

The argument noccasions may be used to vary the number of sampling occasions; it works only
when detection parameters are constant across individuals and across time.

The effective sampling area ‘esa’ (a(é)) reported by derived is equal to the harmonic mean of the
a;(0) (arithmetic mean prior to version 1.5). The sampling variance of a(6) is estimated by

var(a(6)) = G VoG,

where V is the asymptotic estimate of the variance-covariance matrix of the beta detection param-
eters (¢) and G is a numerical estimate of the gradient of a () with respect to 6, evaluated at 6.

A 100(1-alpha)% asymptotic confidence interval is reported for density. By default, this is asym-
metric about the estimate because the variance is computed by backtransforming from the log scale.
You may also choose a symmetric interval (variance obtained on natural scale).

The vector of detection parameters for esa may be specified via beta or real, with the former
taking precedence. If neither is provided then the fitted values in objectfitpar are used. Spec-
ifying real parameter values bypasses the various linear predictors. Strictly, the ‘real’ parameters
are for a naive capture (animal not detected previously).

The computation of sampling variances is relatively slow and may be suppressed with se.esa and
se.D as desired.

If ncores > 1 the parallel package is used to create processes on multiple cores (see Parallel for
more).

For computing derived across multiple models in parallel see par.derived.

Value

Dataframe with one row for each derived parameter (‘esa’, ‘D’) and columns as below

estimate estimate of derived parameter

SE.estimate standard error of the estimate

Icl lower 100(1-alpha)% confidence limit

ucl upper 100(1-alpha)% confidence limit

CVn relative SE of number observed (Poisson or binomial assumption)
CVa relative SE of effective sampling area

CVD relative SE of density estimate

For a multi-session or multi-group analysis the value is a list with one component for each session
and group.

The result will also be a list if object is an ‘secrlist’.

details 45

Warning

derived() may be applied to detection models fitted by maximizing the full likelihood (CL = FALSE).
However, models using g (groups) will not be handled correctly.

Note

Before version 2.1, the output table had columns for ‘varcomp1’ (the variance in D due to variation
in n, i.e., Huggins’ s?), and ‘varcomp2’ (the variance in D due to uncertainty in estimates of
detection parameters).

These quantities are related to CVn and CVa as follows:
CVn = \/varcompl /D
CVa = \/varcomp2/D

References

Borchers, D. L. and Efford, M. G. (2007) Supplements to Biometrics paper. Available online at
http://www.otago.ac.nz/density.

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture—recapture studies. Biometrics, 64, 377-385.

Huggins, R. M. (1989) On the statistical analysis of capture experiments. Biometrika 76, 133—140.

See Also

predict.secr, print.secr, secr.fit, empirical.varD par.derived

Examples

Not run:

extract derived parameters from a model fitted previously
by maximizing the conditional likelihood

derived (secrdemo.CL)

what happens when sampling variance is conditional on mask N?
derived(secrdemo.CL, distribution = "binomial”)

fitted g0, sigma

esa(secrdemo.CL)

force different g0, sigma

esa(secrdemo.CL, real = c(0.2, 25))

End(Not run)

details Detail Specification for secr.fit

Description

The function secr.fit allows many options. Some of these are used infrequently and have been
bundled as a single argument details to simplify the documentation. They are described here.

http://www.otago.ac.nz/density

46 details

Detail components

details$autoini specifies the session from which to compute starting values (multi-session data
only; default 1)

details$centred = TRUE causes coordinates of both traps and mask to be centred on the centroid
of the traps, computed separately for each session in the case of multi-session data. This may be
necessary to overcome numerical problems when x- or y-coordinates are large numbers. The default
is not to centre coordinates.

details$chat optionally specifies the overdispersion of unmarked sightings Tu and unidentified
marked sightings Tm. It is used only for mark-resight models, and is usually computed within
secr.fit (details$nsim > 0), but may be provided by the user. For a single session ‘chat® is a
vector of length 2; for multiple sessions it is a 2-column matrix.

details$chatonly = TRUE used with details$nsim > @ causes the overdispersion statistics for
sighting counts Tu and Tm to be estimated and returned as a vector or 2-column matrix (multi-
session models), with no further model fitting.

details$debug is an integer code used to control the printing of intermediate values (1,2) and to
switch on the R code browser (3). In ordinary use it should not be changed from the default (0).

details$distribution specifies the distribution of the number of individuals detected n; this
may be conditional on the number in the masked area ("binomial") or unconditional ("poisson").
distribution affects the sampling variance of the estimated density. The default is "poisson".
The component ‘distribution’ may also take a numeric value larger than nrow(capthist), rather than
"binomial" or "poisson". The likelihood then treats n as a binomial draw from a superpopulation of
this size, with consequences for the variance of density estimates. This can help to reconcile MLE
with Bayesian estimates using data augmentation.

details$fixedbeta may be used to fix values of beta parameters. It should be a numeric vector
of length equal to the total number of beta parameters (coefficients) in the model. Parameters to
be estimated are indicated by NA. Other elements should be valid values on the link scale and will
be substituted during likelihood maximisation. Check the order of beta parameters in a previously
fitted model.

details$hessian is a character string controlling the computation of the Hessian matrix from
which variances and covariances are obtained. Options are "none" (no variances), "auto" (the de-
fault) or "fdhess" (use the function f{dHess in nlme). If "auto" then the Hessian from the optimisation
function is used. See also method = "none" below.

details$ignoreusage = TRUE causes the function to ignore usage (varying effort) information
in the traps component. The default (details$ignoreusage = FALSE) is to include usage in the
model.

details$intwidth2 controls the half-width of the interval searched by optimise() for the maxi-
mum likelihood when there is a single parameter. Default 0.8 sets the search interval to (0.2s, 1.8s)
where s is the ‘start’ value.

details$knownmarks = FALSE causes secr.fit to fit a zero-truncated sightings-only model that
implicitly estimates the number of marked individuals, rather than inferring it from the number of
rows in the capthist object.

details$LLonly = TRUE causes the function to returns a single evaluation of the log likelihood at
the ‘start’ values.

details$miscparm (default NULL) is an optional numeric vector of starting values for additional
parameters used in a user-supplied distance function (see ‘userdist’ below). If the vector has a
names attribute then the names will be used for the corresponding coefficients (‘beta’ parameters)
which will otherwise be named ‘miscparm1’, miscparm?2’ etc. These parameters are constant across
each model and do not appear in the model formula, but are estimated along with other coefficients

details 47

when the likelihood is maximised. Any transformation (link function) etc. is handled by the user
in the userdist function. The coefficients appear in the output from coef.secr and vcov.secr, but
not predict.secr.

details$nsim specifies the number of replicate simulations to perform to estimate the overdisper-
sion statistics for the sighting counts Tu and Tm. See also details$chat and details$chatonly.

details$paramchooses between various parameterisations of the SECR model. The default details$param = @
is the formulation in Borchers and Efford (2008) and later papers.

details$param = 1 was once used to select the Gardner & Royle parameterisation of the detection
model (p0, o; Gardner et al. 2009) when the detector type is ‘multi’. This parameterisation was
discontinued in 2.10.0.

details$param = 2 selects parameterisation in terms of (esa(go, o), o) (Efford and Mowat 2014).

details$param = 3 selects parameterisation in terms of (ag(lambda0, o), o) (Efford and Mowat
2014). This parameterization is used automatically if a0 appears in the model (e.g., a0 ~ 1).

details$param = 4 selects parameterisation of sigma in terms of the coefficient sigmak and
constant ¢ (sigma = sigmak / D*0.5 + c) (Efford et al. in prep). If c is not included explicitly in
the model (e.g., c ~ 1) then it is set to zero. This parameterization is used automatically if sigmak
appears in the model (e.g., sigmak ~ 1)

details$param = 5 combines parameterisations (3) and (4) (first compute sigma from D, then
compute lambda0 from sigma).

details$savecall determines whether the full call to secr. fit is saved in the output object. The
default is TRUE except when called by par.secr.fit as names in the call are then evaluated,
causing the output to become unwieldy.

details$splitmarked determines whether the home range centre of marked animals is allowed to
move between the marking and sighting phases of a spatial capture—mark—resight study. The default
is to assume a common home-range centre (splitmarked = FALSE).

details$telemetrytype determines how telemetry data in the attribute ‘xylist’ are treated. ‘none’
causes the xylist data to be ignored. ‘dependent’ uses information on the sampling distribution of
each home-range centre in the SECR likelihood. ‘concurrent’ does that and more: it splits capthist
according to telemetry status and appends all-zero histories to the telemetry part for any animals
present in xylist. The default is ‘concurrent’.

details$normalize = TRUE rescales detection so that individual range use sums to 1.0 (cf Royle
etal. 2013)

details$usecov selects the mask covariate to be used for normalization. NULL limits denomina-
tor for normalization to distinguishing habitat from non-habitat.

details$userdist is either a function to compute non-Euclidean distances between detectors and
mask points, or a pre-computed matrix of such distances. The first two arguments of the function
should be 2-column matrices of x-y coordinates (respectively k detectors and m mask points). The
third argument is a habitat mask that defines a non-Euclidean habitat geometry (a linear geometry is
described in documentation for the package ‘secrlinear’). The matrix returned by the function must
have exactly k& rows and m columns. When called with no arguments the function should return a
character vector of names for the required covariates of ‘mask’, possibly including the dynamically
computed density ‘D and a parameter ‘noneuc’ that will be fitted. A slightly expanded account is
at userdist, and full documentation is in the separate document secr-noneuclidean.pdf.

Do not use ‘userdist’ for polygon or transect detectors

References

Efford, M. G. and Mowat, G. (2014) Compensatory heterogeneity in capture—recapture data.Ecology
95, 1341-1348.

http://www.otago.ac.nz/density/pdfs/secr-noneuclidean.pdf

48

detectfn

Gardner, B., Royle, J. A. and Wegan, M. T. (2009) Hierarchical models for estimating density from
DNA mark-recapture studies. Ecology 90, 1106-1115.

Royle, J. A., Chandler, R. B., Sun, C. C. and Fuller, A. K. (2013) Integrating resource selection
information with spatial capture-recapture. Methods in Ecology and Evolution 4, 520-530.

See Also

secr.fit , userdist

Examples

Not run:

Demo of miscparm and userdist

We fix the usual 'sigma' parameter and estimate the same

quantity as miscparm[1]. Differences in CI reflect the implied use
of the identity link for miscparm[1].

mydistfn3 <- function (xy1,xy2, mask) {
if (missing(xy1)) return(character(@))
xyl <- as.matrix(xy1)
Xy2 <- as.matrix(xy2)
miscparm <- attr(mask, 'miscparm')
distmat <- edist(xyl,xy2) / miscparm[1]
distmat

}

fit@ <- secr.fit (captdata)

fit <- se