Accessibility Skip to Global Navigation Skip to Local Navigation Skip to Content Skip to Search Skip to Site Map Menu

Associate Professor Azam Ali

Associate Professor
Director - Bioengineering Programme & Centre for Bioengineering & Nanomedicine (Dunedin Hub)

PhD. (USM), Polymer & Material Sci. & Eng. MSc (Chem. 1st Class)

AzamAli Staff Profile photo

Contact

Tel 64 3 479 7456 Ext 7456
Email azam.ali@otago.ac.nz
Location Applied Sciences Building
Office hours by arrangement

About

Dr. Azam Ali is an Associate Professor in the Department of Food Science and Director of the Bioengineering Programme and Centre for Bioengineering & Nanomedicine (Dunedin Hub).

Azam specialises in biomaterials science and engineering. His research activities includes extraction and characterisation of biomaterials (e.g. proteins, peptides, polysaccharides, biologic tissues/collagen, etc.), understanding materials structure-functions and properties, designing/developing novel, advanced and nanostructure biomaterials & medical devices, functional packaging, formulation/coating and microencapsulation technology for health & wellbeing (both human and animal).

Internationally recognised as a biomaterials expert Azam has published more than 40 peer-reviewed papers, and many industrial (or clients) reports. At present he holds 18 international patents and patent specifications.

Some of the numerous products and product specifications Azam has developed (medical devices, approved FDA, TÜV, TGA, 510K, ISO 13485) are commercialized in NZ and have also obtained approval for use in the USA, EU and AU.

He was awarded the Bayer Year of the Innovators Awards 2010 in recognition of his significant science contribution to the Health and Science sector.

Azam has a BSc (Hons degree), MSc (1991) 1st Class in Organic Chemistry from Jahangirnagar University (JU), Dhaka, Bangladesh and a PhD degree (2000) in Polymer & Materials Science & Engineering from the University of Science (USM), Malaysia. He has worked in various institutes/Universities e.g., AgResearch (CRI), New Zealand; Uni. of North Carolina (UNCC) USA; Pohang University of Science & Technology (POSTECH), South Korea; Malaysian Palm Oil Board, Malaysia; Japan Atomic Energy Research Institute (JAERI), Japan.

Azam is a member of Food Waste Innovation, a University of Otago Research Theme which measures food waste, develops reduction strategies, applies innovative technology, and works to modify producer and consumer behaviour.

Current Memberships

  • Australasian Society for Biomaterials & Tissue Engineering (ASBTE)
  • New Zealand Controlled Release Society (NZCRS)
  • Canterbury Medical Research Society (CMRS), New Zealand
  • Australasian Polymer Society (APS)

^ Top of page

Teaching

Postgraduate study in Bioengineering

  • APPS201 - Materials: Properties and Applications
  • BIOE401 - Research Methods
  • BIOE403 - Bioengineering Design
  • BIOE404 - Medical Devices and Technology
  • BIOE480 - Research Project
  • BIOE495 - Master's Thesis Preparation

^ Top of page

Research

  • Research Expertise
  • Granted Patents

Research Expertise

  • Biomaterials (including biologic materials)
  • Nanostructure biomaterials
  • Medical devices
  • Formulation/coatings, microencapsulation and control released technology
  • Fibre (including electrospinning technology & nanofibres) & Textile materials

Granted Patents

  • Wound care medical products containing wool keratin, US patent No. 7732574 and European patent No. EP1694370
  • Biocomposite biomaterials containing biopolymer wool keratin, US patent No. 7767756
  • Bone void fillers and methods of making the same, US Patent 8142807
  • Porous keratin construct and method of making the same, US Patent 8124735 and European patent: EP2099437 A2
  • Porous Keratin constructs, wound healing assembles and method using the same, US patent US/2008 0317826 A1
  • Nanocomposite negative photoresists for next generation Lithography, US Patent No. 7049044 B2

^ Top of page

Publications

Barzegar-Fallah, A., Houlton, J., Barwick, D., Shavandi, A., Ali, M. A., Clarkson, A. N., & Alimoradi, H. (2021). From barriers to bridges: Glycans in naonparenteral nanomedicines. In P. Kesharwani, S. Taurin & K. Greish (Eds.), Theory and applications of nonparenteral nanomedicines. (pp. 467-487). London, UK: Elsevier. doi: 10.1016/B978-0-12-820466-5.00019-3

Yoshida, M., Turner, P. R., Ali, A., & Cabral, J. D. (2021). Three-dimensional melt-electrowritten polycaprolactone/chitosan scaffolds enhance mesenchymal stem cell behavior. ACS Applied Bio Materials. Advance online publication. doi: 10.1021/acsabm.0c01213

Rajabi, M., McConnell, M., Cabral, J., & Ali, A. (2021). Chitosan hydrogels in 3D printing for biomedical applications. Carbohydrate Polymers. Advance online publication. doi: 10.1016/j.carbpol.2021.117768

Tabassum, N., Ahmed, S., & Ali, M. A. (2021). Chitooligosaccharides and their structural-functional effect on hydrogels: A review. Carbohydrate Polymers. doi: 10.1016/j.carbpol.2021.117882

Ali, M. A., & Bhuiyan, M. H. (2021). Types of biomaterials useful in brain repair. Neurochemistry International, 105034. Advance online publication. doi: 10.1016/j.neuint.2021.105034

Chapter in Book - Research

Barzegar-Fallah, A., Houlton, J., Barwick, D., Shavandi, A., Ali, M. A., Clarkson, A. N., & Alimoradi, H. (2021). From barriers to bridges: Glycans in naonparenteral nanomedicines. In P. Kesharwani, S. Taurin & K. Greish (Eds.), Theory and applications of nonparenteral nanomedicines. (pp. 467-487). London, UK: Elsevier. doi: 10.1016/B978-0-12-820466-5.00019-3

Ali, M. A., & Shavandi, A. (2016). Medical textiles testing and quality assurance. In L. Wang (Ed.), Performance testing of textiles: Methods, technology and applications. (pp. 129-154). Duxford, UK: Woodhead. doi: 10.1016/B978-0-08-100570-5.00007-4

^ Top of page

Journal - Research Article

Yoshida, M., Turner, P. R., Ali, A., & Cabral, J. D. (2021). Three-dimensional melt-electrowritten polycaprolactone/chitosan scaffolds enhance mesenchymal stem cell behavior. ACS Applied Bio Materials. Advance online publication. doi: 10.1021/acsabm.0c01213

Ali, M. A., & Bhuiyan, M. H. (2021). Types of biomaterials useful in brain repair. Neurochemistry International, 105034. Advance online publication. doi: 10.1016/j.neuint.2021.105034

Tabassum, N., Ahmed, S., & Ali, M. A. (2021). Chitooligosaccharides and their structural-functional effect on hydrogels: A review. Carbohydrate Polymers. doi: 10.1016/j.carbpol.2021.117882

Rajabi, M., McConnell, M., Cabral, J., & Ali, A. (2021). Chitosan hydrogels in 3D printing for biomedical applications. Carbohydrate Polymers. Advance online publication. doi: 10.1016/j.carbpol.2021.117768

Sali, S. S., Gould, M. L., Qasim, M., & Ali, M. A. (2021). Biodegradable methacrylated casein for cardiac tissue engineering applications. Journal of Materials Chemistry B, 9, 1557-1567. doi: 10.1039/d0tb02496a

Giteru, S. G., Ali, M. A., & Oey, I. (2021). Elucidating the pH influence on pulsed electric fields-induced self-assembly of chitosan-zein-poly(vinyl alcohol)-polyethylene glycol nanostructured composites. Journal of Colloid & Interface Science, 588, 531-546. doi: 10.1016/j.jcis.2020.12.075

Turner, P. R., Yoshida, M., Ali, A., & Cabral, J. D. (2020). Melt electrowitten sandwich scaffold technique using Sulforhodamine B to monitor stem cell behavior. Tissue Engineering Part C: Methods. Advance online publication. doi: 10.1089/ten.TEC.2020.0240

Deng, X., Gould, M., & Ali, M. A. (2020). Fabrication and characterisation of melt-extruded chitosan/keratin/PCL/PEG drug-eluting sutures designed for wound healing. Materials Science & Engineering: C. Advance online publication. doi: 10.1016/j.msec.2020.111696

Giteru, S. G., Cridge, B., Oey, I., Ali, A., & Altermann, E. (2020). In-vitro degradation and toxicological assessment of pulsed electric fields crosslinked zein-chitosan-poly(vinyl alcohol) biopolymeric films. Food & Chemical Toxicology, 135, 111048. doi: 10.1016/j.fct.2019.111048

Ali, A., & Gould, M. (2020). Untapped potentials of hazardous nanoarchitecural biopolymers. Journal of Hazardous Materials. Advance online publication. doi: 10.1016/j.jhazmat.2020.124740

Boni, R., Ali, A., Giteru, S. G., Shavandi, A., & Clarkson, A. N. (2020). Silk fibroin nanoscaffolds for neural tissue engineering. Journal of Materials Science: Materials in Medicine, 31, 81. doi: 10.1007/s10856-020-06422-5

Nazmul Islam, G. M., Collie, S., Qasim, M., & Ali, M. A. (2020). Highly stretchable and flexible melt spun thermoplastic conductive yarns for smart textiles. Nanomaterials, 10, 2324. doi: 10.3390/nano10122324

Ali, A., Gould, M., & Lyons, K. (2020). Development of an organic-inorganic nanostructured hybrid dental biocomposite. Journal of Nanoscience & Nanotechnology, 20(8), 5252-5259. doi: 10.1166/jnn.2020.18527

Paul, S., Ali, A., & Katare, R. (2020). Molecular complexities underlying the vascular complications of diabetes mellitus: A comprehensive review. Journal of Diabetes & Its Complications, 34, 107613. doi: 10.1016/j.jdiacomp.2020.107613

Giteru, S. G., Ali, A., & Oey, I. (2020). Understanding the relationship between rheological characteristics of pulsed electric fields treated chitosan-zein-poly(vinyl alcohol)-polyethylene glycol composite dispersions and the structure-function of their resulting thin-films. Food Hydrocolloids. Advance online publication. doi: 10.1016/j.foodhyd.2020.106452

Ryder, K., Ali, M. A., Billakanti, J., & Carne, A. (2020). Evaluation of dairy co-product containing composite solutions for the formation of bioplastic films. Journal of Polymers & the Environment, 28, 725-736. doi: 10.1007/s10924-019-01635-4

Giteru, S. G., Ali, M. A., & Oey, I. (2020). Optimisation of pulsed electric fields processing parameters for developing biodegradable films using zein, chitosan and poly(vinyl alcohol). Innovative Food Science & Emerging Technologies, 60, 102287. doi: 10.1016/j.ifset.2020.102287

Giteru, S. G., Ali, M. A., & Oey, I. (2019). Solvent strength and biopolymer blending effects on physicochemical properties of zein-chitosan-polyvinyl alcohol composite films. Food Hydrocolloids, 87, 270-286. doi: 10.1016/j.foodhyd.2018.08.006

Shavandi, A., & Ali, M. A. (2019). Graft polymerization onto wool fibre for improved functionality. Progress in Organic Coatings, 130, 182-199. doi: 10.1016/j.porgcoat.2019.01.054

Hewitt, E., Mros, S., McConnell, M., Cabral, J. D., & Ali, A. (2019). Melt-electrowriting with novel milk protein/PCL biomaterials for skin regeneration. Biomedical Materials, 14, 055013. doi: 10.1088/1748-605X/ab3344

Ryder, K., Ali, M. A., Billakanti, J., & Carne, A. (2018). Fundamental characterisation of caseins harvested by dissolved air flotation from dairy wastewater and comparison with skim milk powder. International Dairy Journal, 78, 112-121. doi: 10.1016/j.idairyj.2017.11.007

Shavandi, A., & Ali, A. (2018). A new adhesive from waste wool protein hydrolysate. Journal of Environmental Chemical Engineering, 6(5), 6700-6706. doi: 10.1016/j.jece.2018.10.022

Ryder, K., Ali, M. A., Carne, A., & Billakanti, J. (2017). The potential use of dairy by-products for the production of non-food biomaterials. Critical Reviews in Environmental Science & Technology, 47(8), 621-642. doi: 10.1080/10643389.2017.1322875

Giteru, S. G., Oey, I., Ali, M. A., Johnson, S. K., & Fang, Z. (2017). Effect of kafirin-based films incorporating citral and quercetin on storage of fresh chicken fillets. Food Control, 80, 37-44. doi: 10.1016/j.foodcont.2017.04.029

Ajay Sharma, L., Love, R. M., Ali, M. A., Sharma, A., Macari, S., Avadhani, A., & Dias, G. J. (2017). Healing response of rat pulp treated with an injectable keratin hydrogel. Journal of Applied Biomaterials & Functional Materials, 15(3), e244-e250. doi: 10.5301/jabfm.5000346

Dias, G. J., Mahoney, P., Hung, N. A., Sharma, L. A., Kalita, P., Smith, R. A., … Ali, A. (2017). Osteoconduction in keratin-hydroxyapatite composite bone-graft substitutes. Journal of Biomedical Materials Research Part B, 105(7), 2034-2044. doi: 10.1002/jbm.b.33735

Hashemi, A., de Decker, F., Orcheston-Findlay, L., Ali, M. A., Alkaisi, M. M., & Nock, V. (2017). Enhanced pattern resolution, swelling-behaviour and biocompatibility of bioimprinted casein microdevices. AIP Advances, 7, 115019. doi: 10.1063/1.4991783

Curline-Wandl, S. A., & Ali, M. A. (2016). Single channel myoelectric control of a 3D printed transradial prosthesis. Cogent Engineering, 3(1), 1245541. doi: 10.1080/23311916.2016.1245541

Ajay Sharma, L., Ali, M. A., Love, R. M., Wilson, M. J., & Dias, G. J. (2016). Novel keratin preparation supports growth and differentiation of odontoblast-like cells. International Endodontic Journal, 49(5), 471-482. doi: 10.1111/iej.12476

Shavandi, A., Bekhit, A. E.-D. A., Sun, Z., & Ali, M. A. (2016). Injectable gel from squid pen chitosan for bone tissue engineering applications. Journal of Sol-Gel Science & Technology, 77(3), 675-687. doi: 10.1007/s10971-015-3899-6

Shavandi, A., Bekhit, A. E.-D. A., Sun, Z., & Ali, M. A. (2016). Bio-scaffolds produced from irradiated squid pen and crab chitosan with hydroxyapatite/β-tricalcium phosphate for bone-tissue engineering. International Journal of Biological Macromolecules, 93(Part B), 1446-1456. doi: 10.1016/j.ijbiomac.2016.04.046

Shavandi, A., Bekhit, A. E.-D. A., Sun, Z., & Ali, A. (2015). A review of synthesis methods, properties and use of hydroxyapatite as a substitute of bone. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 25, 98-117. doi: 10.4028/www.scientific.net/JBBBE.25.98

Shavandi, A., Bekhit, A. A., Bekhit, A. E.-D. A., Sun, Z., & Ali, M. A. (2015). Preparation and characterisation of irradiated crab chitosan and New Zealand Arrow squid pen chitosan. Materials Chemistry & Physics, 167, 295-302. doi: 10.1016/j.matchemphys.2015.10.047

Shavandi, A., Bekhit, A. E.-D. A., Ali, M. A., Sun, Z., & Gould, M. (2015). Development and characterization of hydroxyapatite/β-TCP/chitosan composites for tissue engineering applications. Materials Science & Engineering: C, 56, 481-493. doi: 10.1016/j.msec.2015.07.004

Shavandi, A., Bekhit, A. E.-D. A., Sun, Z., Ali, A., & Gould, M. (2015). A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering. Materials Science & Engineering: C, 55, 373-383. doi: 10.1016/j.msec.2015.05.029

Shavandi, A., Bekhit, A. E.-D. A., Ali, A., & Sun, Z. (2015). Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method. Materials Chemistry & Physics, 149-150, 607-616. doi: 10.1016/j.matchemphys.2014.11.016

Shavandi, A., Bekhit, A. E.-D. A., Ali, M. A., & Sun, Z. (2015). Bio-mimetic composite scaffold from mussel shells, squid pen and crab chitosan for bone tissue engineering. International Journal of Biological Macromolecules, 80, 445-454. doi: 10.1016/j.ijbiomac.2015.07.012

Hashemi, A., Mutreja, I., Alkaisi, M. M., Nock, V., & Ali, M. A. (2015). Fabrication of free-standing casein devices with micro- and nanostructured regular and bioimprinted surface features. Journal of Vacuum Science & Technology B: Microelectronics & Nanometer Structures, 33(6), 06F901. doi: 10.1116/1.4931591

Shavandi, A., Bekhit, A. E.-D. A., Ali, A., Sun, Z., & Ratnayake, J. T. (2015). Microwave-assisted synthesis of high purity β-tricalcium phosphate crystalline powder from the waste of Green mussel shells (Perna canaliculus). Powder Technology, 273, 33-39. doi: 10.1016/j.powtec.2014.12.029

Wan, Z.-Y., Song, F., Sun, Z., Chen, Y.-F., Zhang, W.-L., Samartzis, D., … Ali, M.-A., … Luo, Z.-J. (2014). Aberrantly expressed long noncoding RNAs in human intervertebral disc degeneration: A microarray related study. Arthritis Research & Therapy, 16, 465. doi: 10.1186/s13075-014-0465-5

Ghosh, A., & Ali, M. A. (2012). Studies on physicochemical characteristics of chitosan derivatives with dicarboxylic acids. Journal of Materials Science, 47, 1196-1204. doi: 10.1007/s10853-011-5885-x

Ghosh, A., Ali, M. A., Selvanesan, L., & Dias, G. J. (2010). Structure-function characteristics of the biomaterials based on milk-derived proteins. International Journal of Biological Macromolecules, 46, 404-411. doi: 10.1016/j.ijbiomac.2010.02.011

Ghosh, A., Ali, M. A., & Dias, G. J. (2009). Effect of cross-linking on microstructure and physical performance of casein protein. Biomacromolecules, 10(7), 1681-1688. doi: 10.1021/bm801341x

^ Top of page

Journal - Research Other

Deng, X., Qasim, M., & Ali, A. (2021). Engineering and polymeric composition of drug-eluting suture: A review. Journal of Biomedical Materials Research Part A. Advance online publication. doi: 10.1002/jbm.a.37194

Nazmul Islam, G. M., Ali, A., & Collie, S. (2020). Textile sensors for wearable applications: A comprehensive review. Cellulose, 27, 6103-6131. doi: 10.1007/s10570-020-03215-5

Ali, M. A., Rajabi, M., & Sali, S. S. (2020). Additive manufacturing potential for medical devices and technology. Current Opinion in Chemical Engineering, 28, 127-133. doi: 10.1016/j.coche.2020.05.001

Shavandi, A., & Ali, M. A. (2019). Keratin based thermoplastic biocomposites: A review. Reviews in Environmental Science & Biotechnology, 18(2), 299-316. doi: 10.1007/s11157-019-09497-x

Boni, R., Ali, A., Shavandi, A., & Clarkson, A. N. (2018). Current and novel polymeric biomaterials for neural tissue engineering. Journal of Biomedical Science, 25, 90. doi: 10.1186/s12929-018-0491-8

More publications...