Accessibility Skip to Global Navigation Skip to Local Navigation Skip to Content Skip to Search Skip to Site Map Menu

GENE313 Medical Genetics

The genetic basis of common human diseases. Linkage as applied to the human genome. Techniques for gene mapping. Cytogenetics and its use in the clinic. Mendelian disorders and the genetics of complex diseases with particular reference to diabetes and cancer. Clinical human genetics including ethical considerations. Genetic counselling.

GENE 313 aims to give a broad overview on how genetics impacts upon medical practice today and aims to anticipate developments into the future. Material is presented that explores how the genetic basis of single-gene Mendelian disorders, complex traits, cancer and epigenetic mechanisms are characterised and then employed clinically in medical practice. The lecture course is complemented by a laboratory course that gives hands-on experience of many of the methods that are used diagnostically including karyotypic analysis, medical bioinformatics, DNA sequence analysis, association analysis and characterisation of epigenetic anomalies.

Paper title Medical Genetics
Paper code GENE313
Subject Genetics
EFTS 0.15
Points 18 points
Teaching period Semester 2 (On campus)
Domestic Tuition Fees (NZD) $1,092.15
International Tuition Fees (NZD) $5,314.50

^ Top of page

GENE 221, GENE 222, GENE 223
Schedule C
(i) In approved cases, another 200-level biological sciences paper may be substituted for one of GENE221-GENE223. (ii) This paper includes additional non-streamed lab time that does not appear in the timetable. Please contact the department for further details.
Appropriate for students majoring in genetics, other biological and health sciences and molecular biotechnology.

Teaching staff

Convenor: Professor Stephen Robertson (Department of Pathology)
Other teaching staff: Dr David Markie (Department of Pathology)
Dr Anita Dunbier (Department of Biochemistry)
Professor Greg Jones (Department of Surgery)
Dr Erin Macaulay (Department of Pathology)
Dr Gillian MacKay (Genetics Programme)

Paper Structure

The lecture course is divided into six themes:

  • Clinical Genetics including Chromosomal analysis and Molecular karyotyping
  • Next generation sequencing and its application to medicine including discovery and curation of Genetic Variants
  • Epigenetics
  • The Genomics of Common Medical Conditions
  • Cancer Genomics
  • Genomics and Public Health. Ethics and Genomics in Clinical Practice

The lecture course is complemented by a laboratory course, which provides training in data analysis and relevant genetic methods, including Pedigree analysis, Mendelian genetics and linkage, chromosomal analysis, gene variant annotation and curation, gene by environment interactions and epigenetics.

Teaching Arrangements

The labs are held in the Genetics Laboratory, Room G09, Biochemistry building.

GENE313 Labs are held in the second half of Semester 2 (GENE314 labs are held during the first half of semester 2):

Lab streams are:

Monday 2pm - 6pm / all day Tuesday or  Thursday 2pm - 6pm/ all day Friday (note you can attend lectures during the morning sessions).


Textbooks are not required for this paper.

A book that might be helpful is:
New Clinical Genetics 3rd edition, Andrew Read and Dian Donnai, 2015

Most important is the supplementary reading material that is lodged on Blackboard as indicated by course teachers. A reading list is also to be found in the course handbook.

Graduate Attributes Emphasised
Global perspective, Interdisciplinary perspective, Lifelong learning, Scholarship, Critical thinking, Cultural understanding, Ethics, Information literacy, Research, Self-motivation, Teamwork.
View more information about Otago's graduate attributes.
Learning Outcomes
The broad objectives of GENE 313 are to:
  • Understand patterns of single-gene inheritance, the molecular basis of various DNA-based polymorphisms, the principles of linkage and the challenges that massively parallel sequencing technology, interpretation of karyotypes, chromosomal abnormalities and genomic disorders bring to clinical practice
  • Understand how genetic conditions present clinically; what the clinical issues are and how they are resolved and communicated to families; what the future of genetics is in medicine; the aetiology of complex disease and, in particular, the interplay between genes and environment
  • Be conversant with the design considerations as applied to association analysis, specifically candidate gene approaches and whole-genome screening
  • Understand some of the molecular mechanisms that contribute to the development of cancer, in particular the role of oncogenes and tumour-suppressor genes, and to develop an appreciation of how genetic/molecular information may be used in the development of diagnostics and therapeutics
  • Develop an awareness that epigenetics impacts on disease expression over the human lifespan

^ Top of page


Semester 2

Teaching method
This paper is taught On Campus
Learning management system


Stream Days Times Weeks
A1 Monday 09:00-09:50 28-34, 36-41
Tuesday 09:00-09:50 28-34, 36-41


Stream Days Times Weeks
Attend one stream from
A1 Thursday 14:00-17:50 36-40
Friday 14:00-17:50 36-40
A2 Monday 14:00-17:50 37-41
Tuesday 14:00-17:50 37-41