Catherine McAuley (1778-1841)

- Born to upper middle class Irish family
- By 1798 & aged 20 y, parents had died
- 1803: became manager & companion to Callaghans
- 1822: Callaghans died & Catherine inherited their fortune
- 1824: Catherine built house for women & children, later named House of Mercy
- 1831: Sisters of Mercy was founded as official religious order
- 1841: Catherine died of TB
- 1831 onwards: Sisters of Mercy proliferated in Ireland and later overseas, including New Zealand
- Sisters of Mercy remain dedicated to responding to the needs of the poor

United Nations Millennium Development Goals

1. Reduction of poverty and hunger
 (Measured by rate of restricted growth in children < 5 y)
2. Achieve universal primary education
3. Promote gender equality and empower women
4. Reduce child mortality
5. Improve maternal health
6. Combat malaria, HIV/AIDS, and other diseases
7. Ensure environmental sustainability
8. Develop a global partnership for development
Zinc deficiency: etiology, health consequences, and future solutions

Rosalind S Gibson
Research Professor
Department of Human Nutrition,
University of Otago, Dunedin, New Zealand
Member of International Zn Nutrition Consultative Group

Outline
• Etiology of zinc deficiency
• Adverse health consequences: the evidence
• How to identify population groups at risk
• Future solutions to reduce the risk of zinc deficiency
• How can Zn interventions help achieve MDGs?
• Next steps for mainstreaming Zn in public health programs

Prevalence of micronutrient deficiencies by region

<table>
<thead>
<tr>
<th>Region</th>
<th>Vitamin A (%)a</th>
<th>Iodine (%)b</th>
<th>Anemia (%)c</th>
<th>Zinc? (%)d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>49</td>
<td>43</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>SE Asia</td>
<td>69</td>
<td>48</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Americas</td>
<td>20</td>
<td>25</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>N/A</td>
<td>32</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

* Proportion with clinical eye signs &/or low serum retinol in children <5y
b Proportion with low urinary iodine
c Proportion with low hemoglobin values From Allen et al (2006)
First cases of human Zn deficiency in 1960’s in Middle East

- Male adolescent dwarfs

Clinical features
- Stunting
- Little or no secondary sexual development

Diet
- Unleavened wheat bread
- Low intake of flesh foods
- Practiced geophagia

WHO Global burden of disease – disability adjusted life years (2000)

What is global prevalence of Zn deficiency?

Little information based on biomarkers of zinc status
Current estimates based on prevalence of child stunting

Data derived from WHO or most recent Demographic Health Surveys
What are the functions of zinc?

- > 300 enzymes require Zn for function or regulation
- Biosynthesis of nucleic acids, amino acids, proteins, including specific hormones
 - insulin; adrenal corticosteroids; testosterone
- Growth
- Immune function
- Vitamin A metabolism: night vision
- Reproduction
- Neuro-behavioural function

What is the etiology of zinc deficiency?

- Inadequate dietary intakes
- High physiological requirements
- Excessive losses
- Combination of factors

What are the factors associated with inadequate intakes of Zn?

- Low zinc intakes
 - complementary foods in LICs low in energy & Zn
 - diets based on roots & tubers: cassava, sweet potatoes, sago, enset
 - diets low in cellular animal foods: rich sources of Zn
- Poor bioavailability of zinc
- Environmental factors
Zinc intakes for breast fed infants from complementary foods compared to WHO estimated needs (as %)

Malawi
Ethiopia
Cambodia
Mongolia
Indonesia
Philippines
Zealand

% of WHO needs

0 20 40 60 80

Data are for breastfed infants aged 9 to 11 mos. Deficits are comparable for those aged 6 to 8 and 12 to 23 mos.

What are the factors associated with inadequate intakes of Zn?

• Low zinc intakes

• Poor bioavailability of zinc:
 – diets based on unrefined cereals & legumes
 » high in phytate: potent inhibitor of Zn absorption
 – diets low in cellular animal foods
 » meat, fish, poultry: rich sources of absorbable zinc

• Environmental factors

Effect of phytate content of diets on Zn absorption in adults

- Phy:Zn molar ratios are used to estimate bioavailability of dietary zinc

- Phy:Zn molar ratios > 18 indicate very low bioavailability of Zn in diets
Comparison of daily intakes of zinc & phytate by diet type for Ethiopian women

<table>
<thead>
<tr>
<th>Variable</th>
<th>Maize</th>
<th>Enset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flesh foods (g)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zn mg (mg)</td>
<td>6.3</td>
<td>3.7*</td>
</tr>
<tr>
<td>Phytate (mg)</td>
<td>1356</td>
<td>446*</td>
</tr>
<tr>
<td>Phy:Zn molar ratio</td>
<td>21</td>
<td>11*</td>
</tr>
</tbody>
</table>

* p<0.05 Enset (Enset ventriosum)

Food sources of zinc (as %) in diets of women from Ethiopia, Malawi, UK, Australia & NZ

- Vegetables, fruits
- Dairy products
- Cereals, nuts, legumes
- Meat, poultry, fish

What are the factors associated with inadequate intakes of Zn?

- Low zinc intakes
- Poor bioavailability of zinc
- **Environmental factors**
 - Soils with a low Zn content:
 - Egypt, Iran, Turkey, Pakistan, NE Thailand
 - Staples grown on low zinc soils will have a low zinc content
Comparison of Zn levels in soils and rice in three regions of Thailand

<table>
<thead>
<tr>
<th>Region</th>
<th>Soil Zn (µg/g)</th>
<th>Rice Zn (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>1.35</td>
<td>77.0</td>
</tr>
<tr>
<td>South</td>
<td>1.7</td>
<td>31.9</td>
</tr>
<tr>
<td>N East</td>
<td>0.8</td>
<td>20.1</td>
</tr>
</tbody>
</table>

From Katyal and Vlek (1985)

Diets of NE Thai school children
- 8% energy from animal-source foods
- 51% energy from rice grown on low Zn soils
- Zn intakes below requirements

Biochemical Zn status
- 54% had low serum Zn values indicative of Zn deficiency

Prevalence of inadequate intakes of Zn in children and pregnant women (as %)

What is the etiology of zinc deficiency?
- Inadequate dietary intakes
- High physiological requirements
 - Low birth weight infants (reduced liver Zn reserve)
 - Malnourished infants: catch up growth
 - Infancy, childhood, adolescence: high growth rates
 - Pregnancy, lactation
- Excessive losses etc
- Combination of factors
LBW preterm male infant with acro-orificial dermatitis from severe Zn deficiency

- Fed mother’s milk with a very low [Zn]
- Mother had a genetic defect of mammary gland
- +ve response with Zn supplements

Severe Zn deficiency in adolescence

- Impaired linear growth
- Delayed sexual development

Zinc deficient Egyptian dwarfs. From Prasad et al. (1963)

Prevalence (%) of low serum zinc values among toddlers and pregnant women
What is the etiology of zinc deficiency?

- Excessive losses
 - Diarrhea during infancy and childhood
 - Abnormal intestinal permeability
 - chronic infections

- Additional factors
 - Geophagia
 - Hypochlorhydria: Elderly
 - Disease states:
 - Cystic fibrosis; celiac disease

What are the adverse health consequences of Zn deficiency?

- Impaired growth: MDG # 1
 - Poor linear growth; poor weight gain

- Impaired immune competence: MDG # 4 & 6?
 - Increased morbidity: diarrhoea; ALRI; malaria?
 - Increased mortality

- Adverse pregnancy outcomes: MDG # 5
 - Preterm birth
 - Maternal labour & delivery complications?
What is the evidence for these adverse health consequences of Zn deficiency?

Effect of zinc supplementation on children’s linear growth (n = 47 comparisons; 7,945 children)

Small but significant increase in linear growth
Mean effect size = 0.17
(CI = 0.08, 0.26), p<0.001

Effect of zinc supplementation on children’s weight gain (n = 45 comparisons; 7,778 children)

Zinc supplementation produced a significant increase in weight gain
Mean effect size = 0.12
(CI = 0.05, 0.19), p<0.002
Effect of zinc supplementation on diarrhea incidence (n = 33 comparisons; 16,665 children)

20% reduction in overall diarrhea incidence
RR = 0.80 (0.61, 0.87)
p = 0.0004
27% reduction for children > 12 mos

Effect of zinc supplementation on incidence of acute lower respiratory infections (ALRI) (n = 16 comparisons; 12,376 children)

15% reduction in overall incidence of ALRI
RR = 0.85 (0.75, 0.97)
p = 0.017

Effect of zinc supplementation on child mortality (n = 13 comparisons; 201,616 children)

6% reduction in overall child mortality
RR = 0.94 (0.86, 1.01)
p = 0.11
18% reduction for those > 12 mos
No effect in those less than 12 mos
Therapeutic effect of zinc supplementation on duration of acute diarrhoea/time to recovery

*India, 1988
*Bangladesh, 1992
*India, 2000
*Tirhut, 2000
*India, 2001
Indonesia, 1996
India, 1995
Bangladesh, 1997
India, 2001
India, 2001
Nepal, 2001
Bangladesh, 2001

Pooled

*Difference in mean and 95% CI
Relative Hazards and 95% CI

Effect of Zn supplementation during pregnancy

Meta-analysis of 13 Zn supplementation studies

• Overall: 14% reduction in preterm births
 • Women with BMI < 18.5 & low Zn intakes:
 – Positive effect on birth weight?
 • Maternal labor & delivery complications: variable
 • Postnatal growth & risk of infection: inconsistent

Consider supplemental Zn in high risk areas
 • Stunting < 5 yr > 20%; maternal BMI < 18.5

IZINCG Recommended dose: 20 mg Zn/d

Effect of Zn supplementation on malaria, HIV/AIDS, and other diseases

Preventive effect
 • Malaria: only 3 RCTs
 – Zn may reduce incidence of malaria, especially more severe cases resulting in clinic attendance
 • HIV-positive children
 – Zn may reduce diarrhea & pneumonia in HIV-positive children: often complicate HIV infections

Therapeutic effect
 • Malaria or pneumonia: Insufficient evidence
 • Tuberculosis: no studies to date

From Haider & Bhutta (2009)
Why is it taking so long for LICs to have national policies for reducing risk of Zn deficiency?

- Lack of information on prevalence of Zn deficiency
 - Difficult to identify Zn deficiency: Type 2 nutrient
 - No unique clinical symptoms: poor growth; wasting
- Lack of understanding on importance of Zn deficiency
- Lack of guidance by UN agencies on need to control Zn deficiency
- Lack of funds by donor agencies

Also available on the IZiNCG website: Report on Zn status indicators: www.izincg.org

How can we identify risk of Zn deficiency in populations?

1. Dietary indicator
 Percent with Zn intakes below Estimated Average Requirement (EAR)
 High risk: public health concern > 25%
2. Biochemical indicator
 Percent with low serum Zn concentrations
 High risk: public health concern > 20%
3. Functional indicator
 Percent of children < 5 y with HAZ score < -2.0 SD
 High risk: public health concern > 20%

Prevalence of inadequate zinc intakes in children (as %)

Ma\[a\]lawi Tha\[a\]iland Mexico Kenya Egypt Australia Canada N.Z

Serum zinc in NE Thai, Guatemalan, and Canadian school children (\(\mu\)mol/L)

Guatemala Canada N.E.Thailand

Cambodia Malawi India Indonesia Mexico USA New Zealand Australia

Data from deOnis et al (2000)
Interventions to reduce risk of Zn deficiency

• Supplementation
 – Therapeutic: diarrhea: only ~6 countries
 – Preventive: no programmes to date
 » Potential target groups: infants; toddlers
 pregnant & lactating women
• Food fortification
• Dietary diversification and modification

Zinc supplementation in treatment of diarrhea

• WHO/UNICEF joint statement for zinc in the treatment of diarrhea:
 • Twice age-specific RDA/day (10-20 mg) for 10-14 day distributed with ORS

Ranked 1st investment (with VAC) by 2008 Copenhagen Consensus for prevention of undernutrition in children < 5y

Impact of preventive Zn supplementation in children

• Increased growth and weight gain
• Reduced incidence of diarrhea
• Reduced incidence of ALRI
• Decreased death rate

IZINCG Recommended dose for Zn:
 7 mos - 36 mos: 5 mg Zn/d,
 > 3 yr: 10 mg Zn/d

• BUT: Preventive Zn supplementation in children is not yet practiced in any low income countries
Experience with preventive Zn supplementation: RCTs

- **Canada**: School boys with low height percentiles
- **Guatemala**: School children
- **Chile**: Pre-school children
 - **Chile**: Infants w. birth weight > 2300g
- **S Ethiopia**: Planned: Pregnant women

* Former PhD student

Interventions to reduce risk of Zn deficiency

- **Supplementation**
- **Food Fortification**
 - Mass: cereal staples
 - Targeted: infant foods; school meals
 - Commercially processed
 - Household level
- **Dietary diversification and modification**

Experience with targeted food fortification: RCTs

- **Malawi**: MN fortified therapeutic complementary food (CF) for malnourished children in hospital
- **NE Thailand**: MN fortified seasoning powder on school children in 10 low SES schools
- **Zambia**: MN fortified locally-produced maize-based CF on infants: Serum Zn analysis
- **Cambodia**: Fortifying CFs with MN Sprinkles: Serum Zn to be analyzed
Fortification of seasoning powder in Thailand: RCT

- Fortified with or without Zn (5 mg), Fe (5 mg), vit A (270 ug), & I (50 ug)
- Mixed in school lunch to 580 children from 10 schools for 31 wks

Results: Intervention vs. control
- Sig ↑ in hemoglobin (1st outcome)
- Sig ↓ in biochemical Zn & I deficiencies
- Sig ↓ incidence of respiratory illnesses
- Sig ↓ symptoms of cough, runny nose, diarrhea
- Sig higher cognitive scores for short-term memory & attention
- No effect on growth

Interventions to reduce risk of Zn deficiency

- Supplementation
- Food Fortification
- Dietary diversification and modification (DDM)
 - Changes in food production, food selection, & traditional methods for preparing and processing indigenous foods

Experience with dietary diversification/modification in rural Malawi: two pilot studies

- Breast-fed children aged 6-23 mos
- Children aged 36-84 mos; median 48 mos
- Quasi-experimental designs with non-equivalent control groups
Dietary diversification & modification strategies used in Malawi

- Increase production & consumption of Zn-rich foods, especially cellular animal protein
- Reduce phytate via household processing
 - soaking; germination; fermentation
- Promote exclusive breastfeeding to 6 mos
- Promote safe & appropriate complementary foods at 6 mos + continued breastfeeding to ≥ 2 y

Increase consumption of Zn-rich foods

Malawi infants: Proportion consuming animal foods & legumes post-intervention

Malawi children: Intake of animal-source foods (g/day) post-intervention

Reduce phytate via soaking

Pound maize:
Mix 1 part maize with 4 parts water
Soak overnight
Dry in sun

Significant increase in Zn absorption w. LP maize with 60% loss of phytate
Intervention vs. controls had:
• More diverse diets with a higher quality*
• Lower prevalence of anemia (62 vs. 80%)*
• Lower morbidity*
• Greater muscle mass*
• But: No effect on growth

Efficacy of dietary strategies on Malawian children
From Yeudall et al. (2002, 2007) * P<0.05
Impact on other outcomes
Intervention vs. controls had:
• More diverse diets with a higher quality*
• Lower prevalence of anemia (62 vs. 80%)*
• Lower morbidity*
• Greater muscle mass*
• But: No effect on growth

Future: Biofortification of plant-based staples
• Zn fertilizers on low Zn soils
• Plant-breeding to increase:
 – Zn in rice; wheat; maize
• Genetic modification to:
 – to decrease grain phytate
 – to decrease phytate & increase Zn content of cereal staples

Simulated impact of biofortified maize on prevalence of adequate Zn intakes in Mexican preschoolers (n=1072)

How can Zn interventions help achieve MDGs?
• MDG # 1: Reduce poverty & hunger: Restricts growth
 – Improve linear growth & weight gain
• MDG # 4: Reduce child mortality
 – Reduce diarrhea ~20% & ALRI ~15%
 – Reduce child mortality for those >12 mos ~18%
• MDG # 5: Reduce maternal mortality
 – May reduce protracted labour
• MDG # 6: combat malaria, HIV/AIDS
 – May reduce severity of malaria
 – May reduce risk of diarrhea & pneumonia in HIV +ve children
More research needed
Galvanizing action: next steps for mainstreaming Zn in public health programs

- Collect information on population Zn status in LICs
- Mobilize interest in Zn nutrition
- Determine how best to deliver Zn interventions within existing Public Health programs eg:
 - Zn supplements in growth monitoring
 - Add Zn to Fe supplements for high risk pregnant women
 - Use appropriate levels of Zn in fortification
 - Use effective behaviour change with dietary interventions
- Scale up therapeutic Zn supplementation for diarrhea (only in ~6 LICs)

Acknowledgements
PG students: Canada, New Zealand, Norway, Thailand, Philippines
Collaborators:
Dr N Solomons: Guatemala
Dr P Heywood: Papua New Guinea
Dr B Mitimuni & Prof T Cullinan: Malawi
Dr P Winichagoon: Thailand
Dr S Jack: Servants & WHO: Cambodia
Drs L Lasonka & E Kafwemba: Zambia
Dr Y Abebe: Ethiopia
Dr Enkjargal: Mongolia
plus many other researchers & all the participants!
Reduce phytate via household processing

Loss of phytate via soaking

<table>
<thead>
<tr>
<th>Food</th>
<th>Loss of Phytate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice (12 hrs)</td>
<td></td>
</tr>
<tr>
<td>Maize flour (12hrs)</td>
<td></td>
</tr>
<tr>
<td>Pounded maize (12hrs)</td>
<td></td>
</tr>
<tr>
<td>Mung beans (6 hrs)</td>
<td></td>
</tr>
</tbody>
</table>

Significant increase in Zn absorption with LP maize with 60% loss of phytate

Fractional absorption of Zn in polenta

![Graph showing fractional absorption of Zn in polenta](image)