Accessibility Skip to Global Navigation Skip to Local Navigation Skip to Content Skip to Search Skip to Site Map Menu

Brendon Woodford

Brendon Woodford imageNZCDP(Stage III), BSc, PGCertTertT, PGDipSci, MSc, PhD (Otago)
Senior Lecturer

Room 8.09, Otago Business School
Tel +64 3 479 5432
Email brendon.woodford@otago.ac.nz

Background and interests

Dr Brendon Woodford lectures in the diverse areas of knowledge engineering, machine learning, information systems development, and health informatics.

He conducts research for the Knowledge, Intelligence and Web Informatics (KIWI) Laboratory in the areas of artificial neural networks, fuzzy systems, data visualisation, and image processing and recognition. Since 1998 the overall aim of this research is in the area of computational intelligence. The main objective of his work has been to create adaptive learning systems which generate new knowledge from data that they process and allow for improved decision making in difficult real-world domains.

In the past the application of this work has been improving upon existing machine learning techniques to support decision making and data mining primarily in the horticultural domain but the current focus is now in the health data analytics domain.

This research has contributed to 27 publications to date in both international journals and in some of the top international conferences. In 2008 he completed a PhD which primarily looked at the development and implementation of intelligent decision support systems for New Zealand’s horticulture industry.

Dr Woodford is also a member of the research group:
Intelligent Computing and Networking

^ Top of page

Papers

Supervision

Currently supervising

  • Nuzla Ismail

Currently co-supervising

  • Ahmad Shahi

^ Top of page

Publications

Woodford, B. J., & Ghandour, A. (2021). An information retrieval-based approach to activity recognition in Smart Homes. In H. Hacid, F. Outay, H.-Y. Paik, A. Alloum, M. Petrocchi, M. R. Bouadjenek, … A. Maaradji (Eds.), Service-oriented computing: UCSOS 2020 Workshops: Lecture notes in computer science (Vol. 12632). 12632 LNCS, (pp. 78-90). Cham, Switzerland: Springer. doi: 10.1007/978-3-030-76352-7_51

Ghandour, A., & Woodford, B. J. (2020). COVID-19 impact on e-commerce in UAE. Proceedings of the 21st International Arab Conference on Information Technology (ACIT). IEEE. doi: 10.1109/ACIT50332.2020.9300077

Ghandour, A., & Woodford, B. J. (2019). Ethical issues in artificial intelligence in UAE. Proceedings of the International Arab Conference on Information Technology (ACIT). (pp. 262-266). IEEE. [Full Paper]

Ismail, F. N., Woodford, B. J., & Licorish, S. A. (2019). Evaluating the boundaries of big data environments for machine learning. In J. Liu & J. Bailey (Eds.), Advances in artificial intelligence: Lecture notes in artificial intelligence (Vol. 11919). (pp. 253-264). Cham, Switzerland: Springer. doi: 10.1007/978-3-030-35288-2_21

Shahi, A., Deng, J. D., & Woodford, B. J. (2017). Online hidden conditional random fields to recognize activity-driven behavior using adaptive resilient gradient learning. In D. Liu, S. Xie, Y. Li, D. Zhao & E.-S. M. El-Alfy (Eds.), Neural Information Processing: Lecture notes in computer science (Vol. 10634). (pp. 515-525). Cham, Switzerland: Springer. doi: 10.1007/978-3-319-70087-8

Shahi, A., Woodford, B. J., & Lin, H. (2017). Dynamic real-time segmentation and recognition of activities using a multi-feature windowing approach. In U. Kang, E.-P. Lim, J. X. Yu & Y.-S. Moon (Eds.), Trends and applications in knowledge discovery and data mining: Lecture notes in artificial intelligence (Vol. 10526). (pp. 26-38). Cham, Switzerland: Springer. doi: 10.1007/978-3-319-67274-8_3

Chapter in Book - Research

Lin, H., Deng, J. D., & Woodford, B. J. (2016). Shot boundary detection using multi-instance incremental and decremental one-class support vector machine. In J. Bailey, L. Khan, T. Washio, G. Dobbie, J. Z. Huang & R. Wang (Eds.), Advances in knowledge discovery and data mining: Lecture Notes in Artificial Intelligence (Vol. 9651). (pp. 165-176). Cham, Switzerland: Springer. doi: 10.1007/978-3-319-31753-3_14

Chapter in Book - Research

Shah, M., Deng, J., & Woodford, B. (2013). Illumination invariant background model using mixture of Gaussians and SURF features. In J.-I. Park & J. Kim (Eds.), Computer vision: ACCV 2012 workshops: Lecture notes in computer science (Vol. 7728). (pp. 308-314). Berlin, Germany: Springer. doi: 10.1007/978-3-642-37410-4_27

Chapter in Book - Research

Kasabov, N. K., Israel, S. A., & Woodford, B. J. (1999). Adaptive, evolving, hybrid connectionist systems for image pattern recognition. In S. Pal, A. Ghosh & M. Kundu (Eds.), Soft Computing for Image Processing. (pp. 318-336). Heidleberg, Germany: Springer Verlag.

Chapter in Book - Research

Shah, M., Deng, J. D., & Woodford, B. J. (2015). A Self-adaptive CodeBook (SACB) model for real-time background subtraction. Image & Vision Computing, 38, 52-64. doi: 10.1016/j.imavis.2015.02.001

Journal - Research Article

Shah, M., Deng, J. D., & Woodford, B. J. (2014). Video background modeling: Recent approaches, issues and our proposed techniques. Machine Vision & Applications, 25(5), 1105-1119. doi: 10.1007/s00138-013-0552-7

Journal - Research Article

Mann, S. L., Marshall, M. R., Woodford, B. J., Holt, A., & Williams, A. B. (2012). Predictive performance of Acute Physiological and Chronic Health Evaluation releases II to IV: A single New Zealand centre experience. Anaesthesia & Intensive Care, 40(3), 479-489.

Journal - Research Article

Mann, S. L., Marshall, M. R., Holt, A., Woodford, B., & Williams, A. B. (2010). Illness severity scoring for Intensive Care at Middlemore Hospital, New Zealand: Past and future. New Zealand Medical Journal, 123(1316). Retrieved from http://journal.nzma.org.nz/journal/123-1316/4157/content.pdf

Journal - Research Article

Woodford, B. J. (2008). Evolving neurocomputing systems for horticulture applications. Applied Soft Computing, 8, 564-578. doi: 10.1016/j.asoc.2006.05.006

Journal - Research Article

Shaw, D., Woodford, B. J., & Benwell, G. L. (2007). Educating future IS professionals through real-world integration. International Journal of Teaching & Case Studies, 1(1/2), 66-83.

Journal - Research Article

Kasabov, N. K., Israel, S. A., & Woodford, B. J. (2000). The application of hybrid evolving connectionist systems to image classification. International Journal of Advanced Computational Intelligence, 4(1), 57-65.

Journal - Research Article

Woodford, B. J., & Ghandour, A. (2021). An information retrieval-based approach to activity recognition in Smart Homes. In H. Hacid, F. Outay, H.-Y. Paik, A. Alloum, M. Petrocchi, M. R. Bouadjenek, … A. Maaradji (Eds.), Service-oriented computing: UCSOS 2020 Workshops: Lecture notes in computer science (Vol. 12632). 12632 LNCS, (pp. 78-90). Cham, Switzerland: Springer. doi: 10.1007/978-3-030-76352-7_51

Conference Contribution - Published proceedings: Full paper

Ghandour, A., & Woodford, B. J. (2020). COVID-19 impact on e-commerce in UAE. Proceedings of the 21st International Arab Conference on Information Technology (ACIT). IEEE. doi: 10.1109/ACIT50332.2020.9300077

Conference Contribution - Published proceedings: Full paper

Ghandour, A., & Woodford, B. J. (2019). Ethical issues in artificial intelligence in UAE. Proceedings of the International Arab Conference on Information Technology (ACIT). (pp. 262-266). IEEE. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Ismail, F. N., Woodford, B. J., & Licorish, S. A. (2019). Evaluating the boundaries of big data environments for machine learning. In J. Liu & J. Bailey (Eds.), Advances in artificial intelligence: Lecture notes in artificial intelligence (Vol. 11919). (pp. 253-264). Cham, Switzerland: Springer. doi: 10.1007/978-3-030-35288-2_21

Conference Contribution - Published proceedings: Full paper

Shahi, A., Deng, J. D., & Woodford, B. J. (2017). A streaming ensemble classifier with multi-class imbalance learning for activity recognition. Proceedings of the International Joint Conference on Neural Networks (IJCNN). (pp. 3983-3990). IEEE. doi: 10.1109/IJCNN.2017.7966358

Conference Contribution - Published proceedings: Full paper

Shahi, A., Deng, J. D., & Woodford, B. J. (2017). Online hidden conditional random fields to recognize activity-driven behavior using adaptive resilient gradient learning. In D. Liu, S. Xie, Y. Li, D. Zhao & E.-S. M. El-Alfy (Eds.), Neural Information Processing: Lecture notes in computer science (Vol. 10634). (pp. 515-525). Cham, Switzerland: Springer. doi: 10.1007/978-3-319-70087-8

Conference Contribution - Published proceedings: Full paper

Lin, H., Deng, J. D., Woodford, B. J., & Shahi, A. (2016). Online weighted clustering for real-time abnormal event detection in video surveillance. Proceedings of the Association for Computing Machinery (ACM) on Multimedia Conference. (pp. 536-540). New York, NY: ACM. doi: 10.1145/2964284.2967279

Conference Contribution - Published proceedings: Full paper

Lin, H., Deng, J. D., & Woodford, B. J. (2015). Anomaly detection in crowd scenes via online adaptive one-class support vector machines. Proceedings of the International Conference on Image Processing (ICIP). (pp. 2434-2438). IEEE. doi: 10.1109/icip.2015.7351239

Conference Contribution - Published proceedings: Full paper

Shahi, A., Woodford, B. J., & Deng, J. D. (2015). Event classification using adaptive cluster-based ensemble learning of streaming sensor data. In B. Pfahringer & J. Renz (Eds.), Advances in artificial intelligence: Lecture notes in artificial intelligence (Vol. 9457). (pp. 505-516). Cham, Switzerland: Springer. doi: 10.1007/978-3-319-26350-2_45

Conference Contribution - Published proceedings: Full paper

Lin, H., Deng, J. D., & Woodford, B. J. (2014). Spatial-temporal pyramid matching for crowd scene analysis. In A. Rahman, J. Deng & J. Li (Eds.), Proceedings of the 2nd Workshop on Machine Learning for Sensory Data Analysis (MLSDA). (pp. 12-18). New York: ACM. doi: 10.1145/2689746.2689751

Conference Contribution - Published proceedings: Full paper

Lin, H., Deng, J. D., & Woodford, B. J. (2013). Event detection using quantized binary code and spatial-temporal locality preserving projections. In S. Cranefield & A. Nayak (Eds.), Advances in artificial intelligence: Lecture notes in artificial intelligence (Vol. 8272). (pp. 123-134). Heidelberg, Germany: Springer. doi: 10.1007/978-3-319-03680-9_14

Conference Contribution - Published proceedings: Full paper

Shah, M., Deng, J. D., & Woodford, B. J. (2013). Growing neural gas video background model (GNG-BM). In S. Cranefield & A. Nayak (Eds.), Advances in artificial intelligence: Lecture notes in artificial intelligence (Vol. 8272). (pp. 135-147). Heidelberg, Germany: Springer. doi: 10.1007/978-3-319-03680-9_15

Conference Contribution - Published proceedings: Full paper

Shah, M., Deng, J. D., & Woodford, B. J. (2013). Improving mixture of Gaussians background model through adaptive learning and spatio-temporal voting. Proceedings of the International Conference on Image Processing (ICIP). (pp. 3436-3440). IEEE. doi: 10.1109/ICIP.2013.6738709

Conference Contribution - Published proceedings: Full paper

Lin, H., Deng, J. D., & Woodford, B. J. (2012). Video manifold modelling: Finding the right parameter settings for anomaly detection. In B. McCane, S. Mills & J. D. Deng (Eds.), Proceedings of the 27th Image and Vision Computing New Zealand Conference (IVCNZ). (pp. 168-173). New York: ACM. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Shah, M., Deng, J. D., & Woodford, B. J. (2012). Enhancing the Mixture of Gaussians background model with local matching and local adaptive learning. In B. McCane, S. Mills & J. D. Deng (Eds.), Proceedings of the 27th Image and Vision Computing New Zealand Conference (IVCNZ). (pp. 103-108). New York: ACM. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Shah, M., Deng, J., & Woodford, B. (2011). Enhanced codebook model for real-time background subtraction. In B.-L. Lu, L. Zhang & J. Kwok (Eds.), Neural information processing: Lecture notes in computer science (Vol. 7064). (pp. 449-458). Berlin, Germany: Springer. doi: 10.1007/978-3-642-24965-5_51

Conference Contribution - Published proceedings: Full paper

Shah, M., Deng, J., & Woodford, B. J. (2010). Localized adaptive learning of Mixture of Gaussians models for background extraction. Proceedings of the 25th International Conference of Image and Vision Computing New Zealand (IVCNZ). doi: 10.1109/IVCNZ.2010.6148870

Conference Contribution - Published proceedings: Full paper

Woodford, B. J. (2010). Automatic optimization of pruning in evolving fuzzy neural networks using an entropy measure. Proceedings of the IEEE World Congress on Computational Intelligence (WCCI). (pp. 1053-1059). IEEE. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Woodford, B. J. (2008). Rule extraction from spatial data using a entropy-based evolving fuzzy neural network. In P. A. Whigham, I. Drecki & A. Moore (Eds.), Proceedings of the 20th Annual Colloquium of the Spatial Information Research Centre in conjunction with the New Zealand Cartographic Society Inc and GeoComp. (pp. 55-66). Dunedin, New Zealand: Spatial Information Research Centre and the New Zealand Cartographic Society Inc. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Woodford, B. J. (2005). Rule extraction from spatial data using local learning techniques. In P. A. Whigham (Ed.), Proceedings of the 17th Annual Colloquium of the Spatial Information Research Centre. (pp. 125-130). Dunedin, New Zealand: University of Otago. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Woodford, B. J., Deng, D., & Benwell, G. L. (2004). A wavelet-based neuro-fuzzy system for data mining small image sets. Proceedings of the Australasian Workshop on Data Mining and Web Intelligence. (pp. 139-143). [Full Paper]

Conference Contribution - Published proceedings: Full paper

Woodford, B. J. (2001). Comparative analysis of the EFuNN and the support vector machine models for the classification of horticulture data. In N. Kasabov & B. Woodford (Eds.), Proceedings of the Fifth Biannual Conference on Artificial Neural Networks and Expert Systems. (pp. 70-75). Dunedin: University of Otago Printery. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Woodford, B. J., & Kasabov, N. K. (2001). A wavelet-based neural network classifier for temporal data. Proceedings of the 5th Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems. (pp. 79-85). Japan: Mitsuwa. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Woodford, B. J., & Kasabov, N. K. (2001). Ensembles of EFuNNs: An architecture for a multi module classifier. The Proceedings of FUZZ-IEEE 2001 - The 10th IEEE International Conference on Fuzzy Systems. (pp. 441-445). Melbourne: IEEE Press. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Kasabov, N. K., & Woodford, B. J. (1999). Rule insertion and rule extraction from evolving fuzzy neural networks: Algorithms and applications for building adaptive, intelligent expert systems. IEEE International Fuzzy Systems Conference Proceedings. III, (pp. 1406-1411). Seoul, Korea: IEEE Press. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Watts, M., Woodford, B. J., & Kasabov, N. K. (1999). FuzzyCOPE: A software environment for building intelligent systems - the past, the present and the future. In N. K. Kasabov & K. Ko (Eds.), Emerging Knowledge Engineering and Connectionist-based Information Systems - Proceedings of the ICONIP/ANZIIS/ANNES'99 International Workshop on Future Directions for Intelligent Systems and Information Sciences. (pp. 188-191). Dunedin, New Zealand: University of Otago. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Woodford, B. J. (1999). An overview of virtual reality. In N. K. Kasabov & K. Ko (Eds.), Emerging Knowledge Engineering and Connectionist-based Information Systems - Proceedings of the ICONIP/ANZIIS/ANNES'99 International Workshop on Future Directions for Intelligent Systems and Information Sciences. (pp. 111-114). Dunedin, New Zealand: University of Otago. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Woodford, B. J. (1999). Analysing Images of Pest Damage to Apples using Wavelets. In S. Yeates (Ed.), Proceedings of the Third New Zealand Computer Science Research Students' Conference. (pp. 101-108). University of Waikato: University of Waikato. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Woodford, B. J., Kasabov, N. K., & Wearing, C. H. (1999). Fruit image analysis using wavelets. In N. K. Kasabov & K. Ko (Eds.), Emerging Knowledge Engineering and Connectionist-based Information Systems - Proceedings of the ICONIP/ANZIIS/ANNES'99 International Workshop on Future Directions for Intelligent Systems and Information Sciences. (pp. 88-91). Dunedin, New Zealand: University of Otago. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Woodford, B. J., Wearing, C. H., Walker, J. T. S., & Kasabov, N. K. (1999). An adaptive agent-based distributed system for pest management. In N. K. Kasabov & K. Ko (Eds.), Emerging Knowledge Engineering and Connectionist-based Information Systems - Proceedings of the ICONIP/ANZIIS/ANNES'99 International Workshop on Future Directions for Intelligent Systems and Information Sciences. (pp. 207-212). Dunedin, New Zealand: University of Otago. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Woodford, B. J. (1997). An intelligent knitwear design aid for novice knitters. In R. Kozma, A. R. Gray, R. I. Kilgour & B. J. Woodford (Eds.), Proceedings of the Addendum Session of the 1997 International Conference on Neural Information Processing and Intelligent Information Systems (ICONIP'97/ANZIIS/ANNES'97). (pp. 65-68). University of Otago, Dunedin, New Zealand: Information Science Department. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Woodford, B. J., Gillis, W., & Cornwall, J. (2013). Who accesses clinical anatomy websites? Data from a New Zealand anatomy department. Clinical Anatomy, 26, (pp. 659). doi: 10.1002/ca.22235

Conference Contribution - Published proceedings: Abstract

Shah, M., Deng, J., & Woodford, B. J. (2010). Localized adaptive learning of mixture of Gaussians models for background extraction (LAL-MoG). Proceedings of the Information Science Postgraduate Day. (pp. 11-12). Retrieved from http://infosci.otago.ac.nz/information-science-postgrad-day-2010/

Conference Contribution - Published proceedings: Abstract

Kasabov, N. K., & Woodford, B. J. (Eds.). (2001). Proceedings of the Fifth Biannual Conference on Artificial Neural Networks and Expert Systems (ANNES'2001). Dunedin, New Zealand: University of Otago Printery. 236p.

Conference Contribution - Edited volume of conference proceedings

Kozma, R., Gray, A. R., Kilgour, R. I., & Woodford, B. J. (Eds.). (1997). Proceedings of the Addendum Session of the 1997 International Conference on Neural Information Processing and Intelligent Information Systems (ICONIP/ANZIIS/ANNES'97). Dunedin, New Zealand: University of Otago. 108p.

Conference Contribution - Edited volume of conference proceedings

Woodford, B. J. (2003). Connectionist-Based Intelligent Information Systems for image analysis and knowledge engineering: Applications in horticulture (PhD). University of Otago, Dunedin, New Zealand. 243p.

Awarded Doctoral Degree

More publications...