Accessibility Skip to Global Navigation Skip to Local Navigation Skip to Content Skip to Search Skip to Site Map Menu

Professor Abby Smith

Course Advisor

Fourth-Year Coordinator

Director of Oceanography Programme

Contact DetailsAbbySmith

Office: 310 Castle Street, room 103
Tel: 64 3 479 7470

Academic Qualifications

BA (Geology, Biology) Colby College
SM (Earth Atmospheric and Planetary Sciences) Massachusetts Institute of Technology
DPhil (Earth Sciences) University of Waikato

Research Interests

Temperate carbonate sediments

Cool water reefs and temperate carbonate sediments differ from their tropical counterparts, requiring new ideas about budgets, production, destruction, preservation and lithification. My students and I investigate these processes in a range of environments, from the coast out to the shelf and beyond.

Geochemical signals in skeletons

Variations in isotopic composition and mineralogy of skeletal carbonate may contain information about age, environment, and productivity. Our research team includes Prof C S Nelson (University of Waikato), Prof M M Key Jr (Dickinson College), and Dr P Wyse Jackson (Trinity College), investigating how geochemical signals in carbonate (both modern and fossil) can be used to deduce production, age and growth rate in temperate organisms, particularly bryozoans, as well as how they might reflect longer-term changes in climate and water chemistry.

South Island shelf sediments

The Otago and Southland continental shelves are unusual in their cool-water carbonate reefs and mixing of carbonate and terrestrial sediments. We have studies underway off Otago Peninsula, in Paterson Inlet, through Foveaux Strait, and in Doubtful Sound.

Bryozoans as important carbonate producers

The major taxon producing carbonate sediments on shelves in the Southern Hemisphere is largely unstudied. I work on taxonomy and systematics, identification, growth and production, ecology, and geochemistry of New Zealand's Bryozoa, and I am an active member (and currently Treasurer) of the International Bryozoology Association.

Ocean acidification on the temperate shelf

The next global climate challenge is ocean acidification. Rapid anthropogenic production of CO2 has driven the carbonate chemistry of the sea, causing lowered pH in surface waters. Understanding temperate southern hemisphere shelf carbonate dynamics is important. We study the temperate carbonate budget -- production, geochemistry, dissolution, and accumulation in cool temperate environments. Temperate shelf carbonate sediments, which blanket southern shelves of New Zealand and Australia, may serve as biological saturometers, monitoring the effects of acidification over shelf depths.


Abby is the Chief Course Advisor for the Department of Marine Science.
She is also the fourth-year coordinator.
She teaches in:

  • MARI 112 Global Marine Systems — lecturer
  • MARI 201 Physical Oceanography — lecturer, sometimes course coordinator
  • MARI 202 Marine Invertebrate Ecology and Biology — lecturer
  • MARI 401 Advanced Methods in Marine Science — Coordinator, principal lecturer
  • MARI 429 Coastal Marine Environment -- Coordinator, principal lecturer
  • MARI480/490/495 Research Projects and Proposals -- Coordinator

Postgraduate Students

Katerina Achilleos - Thesis Title (PhD):Growth and calcification in articulated bryozoans as a response to environmental conditions.

Rebecca Zitoun - Thesis Title (PhD):Quantification of copper speciation parameters in differing marine environments.

^ Top of page


Smith, A. M., & Key, Jr, M. M. (2020). Growth geometry and measurement of growth rates in marine bryozoans: A review. In P. Wyse Jackson & K. Zágoršek (Eds.), Bryozoan Studies 2019: Proceedings of the 18th International Bryozoology Association (IBA) Conference. (pp. 139-156). Prague, Czech Republic: Czech Geological Survey. [Full Paper]

Mello, H., Smith, A. M., Wood, A., Tidey, E., & Gordon, D. (2020). Habitat monitoring and marine protection of habitat-forming bryozoa, Otago, New Zealand. Proceedings of the Ocean Sciences Meetings (OSM). ME34E-0220. Retrieved from

Wells, S. R., Wing, L. C., Smith, A. M., & Smith, I. W. G. (2019). Historical changes in bivalve growth rates indicate ecological consequences of human occupation in estuaries. Aquatic Conservation. Advance online publication. doi: 10.1002/aqc.3039

Achilleos, K., Smith, A. M., & Gordon, D. P. (2019). The articulated bryozoan genus Cellaria in the southern Zealandian region: Distribution and associated fauna. Marine Biodiversity. Advance online publication. doi: 10.1007/s12526-019-01009-y

Peebles, B. A., & Smith, A. M. (2019). Wasting away in the intertidal: The fate of chiton valves in an acidifying ocean. Palaios, 34(6), 281-290. doi: 10.2110/palo.2018.095

Chapter in Book - Research

Bostock, H., Tracey, D., Dunbar, G., Handler, M., Baker, J., Smith, A., & Riedi, M. (2013). Deep-sea coral carbonate mineralogy. In D. Tracey, H. Bostock, K. Currie, S. Mikaloff-Fletcher, M. Williams, M. Hadfield, … V. Cummings (Eds.), The potential impact of ocean acidification on deep-sea corals and fisheries habitat in New Zealand waters [New Zealand Aquatic Environment and Biodiversity Report No. 117]. (pp. 20-29). Wellington, New Zealand: Ministry for Primary Industries.

Barker, M., Brett, T., Darby, J., Dugan, J., Hubbard, D., Johnson, P., Mladenov, P., … Peake, B., Probert, K., Smith, A., Spencer, H., & Walker, S. (2003). The coast. In J. T. Darby, R. E. Fordyce, A. F. Mark, P. K. Probert & C. R. Townsend (Eds.), The natural history of southern New Zealand. (pp. 267-311). Dunedin: University of Otago Press.

^ Top of page

Journal - Research Article

Wells, S. R., Wing, L. C., Smith, A. M., & Smith, I. W. G. (2019). Historical changes in bivalve growth rates indicate ecological consequences of human occupation in estuaries. Aquatic Conservation. Advance online publication. doi: 10.1002/aqc.3039

Peebles, B. A., & Smith, A. M. (2019). Wasting away in the intertidal: The fate of chiton valves in an acidifying ocean. Palaios, 34(6), 281-290. doi: 10.2110/palo.2018.095

Achilleos, K., Smith, A. M., & Gordon, D. P. (2019). The articulated bryozoan genus Cellaria in the southern Zealandian region: Distribution and associated fauna. Marine Biodiversity. Advance online publication. doi: 10.1007/s12526-019-01009-y

Cummings, V. J., Smith, A. M., Marriott, P. M., Peebles, B. A., & Halliday, N. J. (2019). Effect of reduced pH on physiology and shell integrity of juvenile Haliotis iris (pāua) from New Zealand. PeerJ, 7, e7670. doi: 10.7717/peerj.7670

Salter, M. A., Perry, C. T., & Smith, A. M. (2019). Calcium carbonate production by fish in temperate marine environments. Limnology & Oceanography. Advance online publication. doi: 10.1002/lno.11339

Migliaccio, O., Pinsino, A., Maffioli, E., Smith, A. M., Agnisola, C., Matranga, V., … Palumbo, A. (2019). Living in future ocean acidification, physiological adaptive responses of the immune system of sea urchins resident at a CO2 vent system. Science of the Total Environment, 672, 938-950. doi: 10.1016/j.scitotenv.2019.04.005

Orr, R. J. S., Haugen, M. N., Berning, B., Bock, P., Cumming, R. L., Florence, W. K., … Smith, A. M., … Liow, L. H. (2019). A genome-skimmed phylogeny of a widespread bryozoan family, Adeonidae. BMC Evolutionary Biology, 19, 235. doi: 10.1186/s12862-019-1563-4

Loxton, J., Spencer Jones, M., Najorka, J., Smith, A. M., & Porter, J. S. (2018). Skeletal carbonate mineralogy of Scottish bryozoans. PLoS ONE, 13(6), e0197533. doi: 10.1371/journal.pone.0197533

Law, C. S., Bell, J. J., Bostock, H. C., Cornwall, C. E., Cummings, V. J., Currie, K., … Hepburn, C. D., Hurd, C. L., Lamare, M., … Smith, A. M., & Tracey, D. M. (2018). Ocean acidification in New Zealand waters: Trends and impacts. New Zealand Journal of Marine & Freshwater Research, 52(2), 155-195. doi: 10.1080/00288330.2017.1374983

Northern, T. J., Smith, A. M., McKinnon, J. F., & Bolstad, K. S. R. (2018). Trace elements in beaks of greater hooked squid Onykia ingens: Opportunities for environmental tracing. Molluscan Research. Advance online publication. doi: 10.1080/13235818.2018.1495604

Peebles, B. A., & Smith, A. M. (2018). Abrasion provides clues on a chiton taphonomic conundrum. Palaeogeography, Palaeoclimatology, Palaeoecology, 496, 183-191. doi: 10.1016/j.palaeo.2018.01.036

Smith, A. M. (2018). Addicted to Bryozoans. Junctures, (19), 37-41.

Key, Jr, M. M., Rossi, R. K., Smith, A. M., Hageman, S. J., & Patterson, W. P. (2018). Stable isotope profiles of skeletal carbonate validate annually-produced growth checks in the bryozoan Melicerita chathamensis from Snares Platform, New Zealand. Bulletin of Marine Science, 94(4), 1447-1464. doi: 10.5343/bms.2017.1166

Orr, R. J. S., Waeschenbach, A., Enevoldsen, E. L. G., Boeve, J. P., Haugen, M. N., Voje, K. L., … Smith, A. M., Gordon, D. P., & Liow, L. H. (2018). Bryozoan genera Fenestrulina and Microporella no longer confamilial: Multi-gene phylogeny supports separation. Zoological Journal of the Linnean Society. Advance online publication. doi: 10.1093/zoolinnean/zly055

Peebles, B. A., Smith, A. M., & Spencer, H. G. (2017). Valve microstructure and phylomineralogy of New Zealand chitons. Journal of Structural Biology, 197(3), 250-259. doi: 10.1016/j.jsb.2016.12.002

Loxton, J., Najorka, J., Humphreys-Williams, E., Kuklinski, P., Smith, A. M., Porter, J. S., & Spencer Jones, M. (2017). The forgotten variable: Impact of cleaning on the skeletal composition of a marine invertebrate. Chemical Geology, 474, 45-57. doi: 10.1016/j.chemgeo.2017.10.022

Smith, A. M., & Spencer, H. G. (2016). Skeletal mineralogy of scaphopods: An unusual uniformity. Journal of Molluscan Studies, 82(2), 344-348. doi: 10.1093/mollus/eyv061

Smith, A. M., Key, Jr, M. M., Henderson, Z. E., Davis, V. C., & Winter, D. J. (2016). Pretreatment for removal of organic material is not necessary for x-ray-diffraction determination of mineralogy in temperate skeletal carbonate. Journal of Sedimentary Research, 86(12), 1425-1433. doi: 10.2110/jsr.2016.86

Cunningham, S. C., Smith, A. M., & Lamare, M. D. (2016). The effects of elevated pCO2 on growth, shell production and metabolism of cultured juvenile abalone, Haliotis iris. Aquaculture Research, 47, 2375-2392. doi: 10.1111/are.12684

Smith, A. M., Clark, D. E., Lamare, M. D., Winter, D. J., & Byrne, M. (2016). Risk and resilience: Variations in magnesium in echinoid skeletal calcite. Marine Ecology Progress Series, 561, 1-16. doi: 10.3354/meps11908

Roleda, M. Y., Cornwall, C. E., Feng, Y., McGraw, C. M., Smith, A. M., & Hurd, C. L. (2015). Effect of ocean acidification and pH fluctuations on the growth and development of coralline algal recruits, and an associated benthic algal assemblage. PLoS ONE, 10(10), e0140394. doi: 10.1371/journal.pone.0140394

Bostock, H. C., Tracey, D. M., Currie, K. I., Dunbar, G. B., Handler, M. R., Mikaloff Fletcher, S. E., Smith, A. M., & Williams, M. J. M. (2015). The carbonate mineralogy and distribution of habitat-forming deep-sea corals in the southwest pacific region. Deep Sea Research Part I, 100, 88-104. doi: 10.1016/j.dsr.2015.02.008

Brinkman, T. J., & Smith, A. M. (2015). Effect of climate change on crustose coralline algae at a temperate vent site, White Island, New Zealand. Marine & Freshwater Research, 66(4), 360-370. doi: 10.1071/MF14077

Riedi, M. A., & Smith, A. M. (2015). Tube growth and calcification of two reef-building ecosystem engineers in southern New Zealand: Galeolaria hystrix and Spirobranchus cariniferus (Polychaeta: Serpulidae). Marine Geology, 367(1), 212-219. doi: 10.1016/j.margeo.2014.10.010

Taylor, P. D., Waeschenbach, A., Smith, A. M., & Gordon, D. P. (2015). In search of phylogenetic congruence between molecular and morphological data in bryozoans with extreme adult skeletal heteromorphy. Systematics & Biodiversity, 13(6), 525-544. doi: 10.1080/14772000.2015.1049673

Garden, C. J., & Smith, A. M. (2015). Voyages of Seaweeds: The role of macroalgae in sediment transport. Sedimentary Geology, 318, 1-9. doi: 10.1016/j.sedgeo.2014.11.007

Byrne, M., Smith, A. M., West, S., Collard, M., Dubois, P., Graba-landry, A., & Dworjanyn, S. A. (2014). Warming influences Mg2+ content, while warming and acidification influence calcification and test strength of a sea urchin. Environmental Science & Technology, 48(21), 12620-12627. doi: 10.1021/es5017526

Cornwall, C. E., Boyd, P. W., McGraw, C. M., Hepburn, C. D., Pilditch, C. A., Morris, J. N., Smith, A. M., & Hurd, C. L. (2014). Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE, 9(5), e97235. doi: 10.1371/journal.pone.0097235

Enke, S., Smith, A. M., & Hageman, S. J. (2014). Bryozoan settlement substrates and implications for carbonate sediment production. Studi Trentini di Scienze Naturali, 94, 95-99.

Smith, A. M. (2014). Growth and calcification of marine bryozoans in a changing ocean. Biological Bulletin, 226(3), 203-210.

Smith, A. M., Berman, J., Key, Jr, M. M., & Winter, D. J. (2013). Not all sponges will thrive in a high-CO2 ocean: Review of the mineralogy of calcifying sponges. Palaeogeography, Palaeoclimatology, Palaeoecology, 392, 463-472. doi: 10.1016/j.palaeo.2013.10.004

Wolfe, K., Smith, A. M., Trimby, P., & Byrne, M. (2013). Microstructure of the paper nautilus (Argonauta nodosa) shell and the novel applicatoin of electron backscatter diffraction (EBSD) to address effects of ocean acidification. Marine Biology, 160(8), 2271-2278. doi: 10.1007/s00227-012-2032-4

Smith, A. M., Riedi, M. A., & Winter, D. J. (2013). Temperate reefs in a changing ocean: Skeletal carbonate mineralogy of serpulids. Marine Biology, 160(9), 2281-2294. doi: 10.1007/s00227-013-2210-z

Smith, A. M., Sutherland, J. E., Kregting, L., Farr, T. J., & Winter, D. J. (2012). Phylomineralogy of the coralline red algae: Correlation of skeletal mineralogy with molecular phylogeny. Phytochemistry, 81, 97-108. doi: 10.1016/j.phytochem.2012.06.003

Smith, A. M., Henderson, Z. E., Kennedy, M., King, T. M., & Spencer, H. G. (2012). Reef formation versus solitariness in two New Zealand serpulids does not involve cryptic species. Aquatic Biology, 16(1), 97-103. doi: 10.3354/ab00444

Wolfe, K., Smith, A. M., Trimby, P., & Byrne, M. (2012). Vulnerability of the paper nautilus (Argonauta nodosa) shell to a climate-change ocean: Potential for extinction by dissolution. Biological Bulletin, 223(2), 236-244.

Wood, A. C. L., Probert, P. K., Rowden, A. A., & Smith, A. M. (2012). Complex habitat generated by marine bryozoans: A review of its distribution, structure, diversity, threats and conservation. Aquatic Conservation, 22(4), 547-563. doi: 10.1002/aqc.2236

Garden, C. J., & Smith, A. M. (2011). The role of kelp in sediment transport: Observations from southeast New Zealand. Marine Geology, 281, 35-42. doi: 10.1016/j.margeo.2011.01.006

Garden, C. J., Craw, D., Waters, J. M., & Smith, A. (2011). Rafting rocks reveal marine biological dispersal: A case study using clasts from beach-cast macroalgal holdfasts. Estuarine, Coastal & Shelf Science, 95(4), 388-394. doi: 10.1016/j.ecss.2011.10.008

Smith, A. M., Kregting, L., Fern, S., & Fraser, C. I. (2011). Sedimentology of a wreck: The Rainbow Warrior revisited. Marine Pollution Bulletin, 62(11), 2412-2419. doi: 10.1016/j.marpolbul.2011.08.028

Smith, A. M., Kregting, L., Fern, S., & Fraser, C. I. (2011). Sedimentology of a wreck: The Rainbow Warrior revisited. Marine Pollution Bulletin, 62, 2412-2419. doi: 10.1016/j.marpolbul.2011.08.028

Smith, A. M., Wood, A. C. L., Liddy, M. F. A., Shears, A. E., & Fraser, C. I. (2010). Human impacts in an urban port: The carbonate budget, Otago Harbour, New Zealand. Estuarine, Coastal & Shelf Science, 90(2), 73-79. doi: 10.1016/j.ecss.2010.07.004

Smith, A. M., & Lawton, E. I. (2010). Growing up in the temperate zone: Age, growth, calcification and carbonate mineralogy of Melicerita chathamensis (Bryozoa) in southern New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 298(3-4), 271-277. doi: 10.1016/j.palaeo.2010.09.033

Smith, A. M., & Girvan, E. (2010). Understanding a bimineralic bryozoan: Skeletal structure and carbonate mineralogy of Odontionella cyclops (Foveolariidae: Cheilostomata: Bryozoa) in New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 289(1-4), 113-122. doi: 10.1016/j.palaeo.2010.02.022

Smith, A. M., & Clark, D. E. (2010). Skeletal carbonate mineralogy of Bryozoans from Chile: An independent check of phylogenetic patterns. Palaios, 25(4), 229-233. doi: 10.2110/palo.2009.p09-106r

Smith, A. M. (2009). Bryozoans as southern sentinels of ocean acidification: A major role for a minor phylum. Marine & Freshwater Research, 60, 475-482. doi: 10.1071/mf08321

Smith, A. M., Taylor, P. D., & Spencer, H. G. (2008). Resolution of taxonomic issues in the Horneridae (Bryozoa: Cyclostomata). Annals of Bryozoology, 2, 359-411.

Smith, A. M. (2008). Women in the International Bryozoology Association, 1965 to 2001. Annals of Bryozoology, 2, 347-358.

More publications...