(PhD)
Director of Computational Modelling (COMO)
Vice-president of the New Zealand Mathematical Society
Fellow of the Royal Society of NZ
Office: Science III, room 515
Tel +64 3 479 7889
Email david.bryant@otago.ac.nz
About
David Bryant is a world leader in the development of mathematical tools for inferring evolutionary relationships among biological organisms. He has made significant theoretical and practical contributions to phylogenetics — the field of biology studying the reconstruction of evolutionary history. His research has been highly cited and applied to a diverse range of different areas, including early bacterial evolution, plant ecology, rapid identification of pathogens and even the origins of the fairy tales! He was joint winner of the 2016 New Zealand Mathematics Society Research Award.
Prior to coming to Otago, David was an associate professor at McGill University, Montreal, and then at the University of Auckland.
Teaching responsibilities
His teaching responsibilities include:
- MATH 130 Fundamentals of Modern Mathematics 1
- COMO 101 Modeling and Computation
- COMO 204 Differential equations
Research Interests
- Evolutionary Biology, phylogenetics and population genetics
- Metric geometry and mathematical diversities
- Computational Bayesian statistics
See David Bryant's Google Scholar profile for more details.
Publications
Stoltz, M., Stoltz, G., Obara, K., Wang, T., & Bryant, D. (2021). Acceleration of hidden Markov model fitting using graphical processing units, with application to low-frequency tremor classification. Computers & Geosciences, 156(104902). doi: 10.1016/j.cageo.2021.104902
Stoltz, M., Baeumer, B., Bouckaert, R., Fox, C., Hiscott, G., & Bryant, D. (2021). Bayesian inference of species trees using diffusion models. Systematic Biology, 70(1), 145-161. doi: 10.1093/sysbio/syaa051
Collienne, L., Elmes, K., Fischer, M., Bryant, D., & Gavryushkin, A. (2021). Discrete coalescent trees. Journal of Mathematical Biology, 83, 60. doi: 10.1007/s00285-021-01685-0
Bryant, D., Cioica-Licht, P., Clark, L., & Young, R. (2021). Inner products for convex bodies. Journal of Convex Analysis. Advance online publication.
Bryant, D., Nies, A., & Tupper, P. (2021). Fraïssé limits for relational metric structures. Journal of Symbolic Logic, 86(3), 913-934. doi: 10.1017/jsl.2021.65
Stoltz, M., Stoltz, G., Obara, K., Wang, T., & Bryant, D. (2021). Acceleration of hidden Markov model fitting using graphical processing units, with application to low-frequency tremor classification. Computers & Geosciences, 156(104902). doi: 10.1016/j.cageo.2021.104902
Journal - Research Article
Stoltz, M., Baeumer, B., Bouckaert, R., Fox, C., Hiscott, G., & Bryant, D. (2021). Bayesian inference of species trees using diffusion models. Systematic Biology, 70(1), 145-161. doi: 10.1093/sysbio/syaa051
Journal - Research Article
Collienne, L., Elmes, K., Fischer, M., Bryant, D., & Gavryushkin, A. (2021). Discrete coalescent trees. Journal of Mathematical Biology, 83, 60. doi: 10.1007/s00285-021-01685-0
Journal - Research Article
Bryant, D., Cioica-Licht, P., Clark, L., & Young, R. (2021). Inner products for convex bodies. Journal of Convex Analysis. Advance online publication.
Journal - Research Article
Bryant, D., Nies, A., & Tupper, P. (2021). Fraïssé limits for relational metric structures. Journal of Symbolic Logic, 86(3), 913-934. doi: 10.1017/jsl.2021.65
Journal - Research Article
Wu, P., Bryant, D., & Tupper, P. (2021). Negative-type diversities, a multi-dimensional analogue of negative-type metrics. Journal of Geometric Analysis, 31, 1703-1720. doi: 10.1007/s12220-019-00321-0
Journal - Research Article
Bryant, D., & Scornvacca, C. (2019). An O(n log n) time algorithm for computing the path-length distance between trees. Algorithmica, 81, 3692-3706. doi: 10.1007/s00453-019-00594-5
Journal - Research Article
Kapust, N., Nelson-Sathi, S., Schönfeld, B., Hazkani-Covo, E., Bryant, D., Lockhart, P. J., … Martin, W. F. (2018). Failure to recover major events of gene flux in real biological data due to method misapplication. Genome Biology & Evolution, 10(5), 1198-1209. doi: 10.1093/gbe/evy080
Journal - Research Article
Larcombe, M. J., Jordan, G. J., Bryant, D., & Higgins, S. I. (2018). The dimensionality of niche space allows bounded and unbounded processes to jointly influence diversification. Nature Communications, 9, 4258. doi: 10.1038/s41467-018-06732-x
Journal - Research Article
Balvočiūtė, M., Bryant, D., & Spillner, A. (2017). When can splits be drawn in the plane? SIAM Journal on Discrete Mathematics, 31(2), 839-856. doi: 10.1137/15M1040852
Journal - Research Article
Bryant, D., Nies, A., & Tupper, P. (2017). A universal separable diversity. Analysis & Geometry in Metric Spaces, 5, 138-151. doi: 10.1515/agms-2017-0008
Journal - Research Article
Hiscott, G., Fox, C., Parry, M., & Bryant, D. (2016). Efficient recycled algorithms for quantitative trait models on phylogenies. Genome Biology & Evolution, 8(5), 1338-1350. doi: 10.1093/gbe/evw064
Journal - Research Article
Mehta, R. S., Bryant, D., & Rosenberg, N. A. (2016). The probability of monophyly of a sample of gene lineages on a species tree. PNAS, 113(29), 8002-8009. doi: 10.1073/pnas.1601074113
Journal - Research Article
Nelson-Sathi, S., Sousa, F. L., Roettger, M., Lozada-Chávez, N., Thiergart, T., Janssen, A., Bryant, D., … Martin, W. F. (2015). Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature, 517(7532), 77-80. doi: 10.1038/nature13805
Journal - Research Article
Ku, C., Nelson-Sathi, S., Roettger, M., Sousa, F. L., Lockhart, P. J., Bryant, D., … Martin, W. F. (2015). Endosymbiotic origin and differential loss of eukaryotic genes. Nature, 524, 427-432. doi: 10.1038/nature14963
Journal - Research Article
Leigh, J. W., & Bryant, D. (2015). Monte Carlo strategies for selecting parameter values in simulation experiments. Systematic Biology, 64(5), 741-751. doi: 10.1093/sysbio/syv030
Journal - Research Article
Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology & Evolution, 6(9), 1110-1116. doi: 10.1111/2041-210X.12410
Journal - Research Article
Holder, M. T., Lewis, P. O., Swofford, D. L., & Bryant, D. (2014). Variable tree topology stepping-stone marginal likelihood estimation. In M.-H. Chen, L. Kuo & P. O. Lewis (Eds.), Bayesian phylogenetics: Methods, algorithms, and applications. Boca Raton, FL: CRC Press.
Chapter in Book - Research
Bryant, D., & Tupper, P. F. (2014). Diversities and the geometry of hypergraphs. Discrete Mathematics & Theoretical Computer Science, 16(2), 1-20.
Journal - Research Article
Bryant, D. (2014). Statistical flaws undermine pre-Columbian chicken debate. PNAS, 111(35), E3584. doi: 10.1073/pnas.1410797111
Journal - Research Other
Bryant, D., & Kydd, J. (2013). Forty years of model-based phylogeography. In C. Chauve, N. El Mabrouk & E. Tannier (Eds.), Models and algorithms for genome evolution (Computational Biology Vol. 19). (pp. 17-28). London, UK: Springer. doi: 10.1007/978-1-4471-5298-9
Chapter in Book - Research
White, D. J., Bryant, D. J., & Gemmell, N. J. (2013). How good are indirect tests at detecting recombination in human mtDNA? Genes Genomes Genetics, 3(7), 1095-1104. doi: 10.1534/g3.113.006510
Journal - Research Article
Bryant, D., & Tupper, P. F. (2012). Hyperconvexity and tight-span theory for diversities. Advances in Mathematics, 231(6), 3172-3198. doi: 10.1016/j.aim.2012.08.008
Journal - Research Article
Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A., & Choudhury, A. R. (2012). Inferring species trees directly from biallelic genetic markers: Bypassing gene trees in a full coalescent analysis. Molecular Biology & Evolution, 29(8), 1917-1932. doi: 10.1093/molbev/mss086
Journal - Research Article
Storey, A. A., Athens, J. S., Bryant, D., Carson, M., Emery, K., deFrance, S., Higham, C., … Walter, R., & Matisoo-Smith, E. (2012). Investigating the global dispersal of chickens in prehistory using ancient mitochondrial DNA signatures. PLoS ONE, 7(7), e39171. doi: 10.1371/journal.pone.0039171
Journal - Research Article
Bryant, D., & Klaere, S. (2012). The link between segregation and phylogenetic diversity. Journal of Mathematical Biology, 64(1-2), 149-162. doi: 10.1007/s00285-011-0409-5
Journal - Research Article
Siekmann, I., Wagner, L. E., Yule, D., Fox, C., Bryant, D., Crampin, E. J., & Sneyd, J. (2011). MCMC estimation of Markov models for ion channels. Biophysical Journal, 100(8), 1919-1929. doi: 10.1016/j.bpj.2011.02.059
Journal - Research Article
Dagan, T., Roettger, M., Bryant, D., & Martin, W. (2010). Genome networks root the tree of life between prokaryotic domains. Genome Biology & Evolution, 2, 379-392. doi: 10.1093/gbe/evq025
Journal - Research Article
Gray, R. D., Bryant, D., & Greenhill, S. J. (2010). On the shape and fabric of human history. Philosophical Transactions of the Royal Society B, 365(1559), 3923-3933. doi: 10.1098/rstb.2010.0162
Journal - Research Article
Bryant, D., & Steel, M. (2009). Computing the distribution of a tree metric. IEEE/ACM Transactions on Computational Biology & Bioinformatics, 6(3), 420-426. doi: 10.1109/tcbb.2009.32
Journal - Research Article
Bryant, D. (2009). Hadamard phylogenetic methods and the n-taxon process. Bulletin of Mathematical Biology, 71(2), 339-351. doi: 10.1007/s11538-008-9364-8
Journal - Research Article
Bryant, D., Moulton, V., & Spillner, A. (2007). Consistency of the Neighbor-Net algorithm. Algorithms for Molecular Biology, 2, 8. doi: 10.1186/1748-7188-2-8
Journal - Research Article
Bryant, D., & Dress, A. (2007). Linearly independent split systems. European Journal of Combinatorics, 28(6), 1814-1831. doi: 10.1016/j.ejc.2006.04.007
Journal - Research Article
Bruen, T. C., Philippe, H., & Bryant, D. (2006). A simple and robust statistical test for detecting the presence of recombination. Genetics, 172(4), 2665-2681. doi: 10.1534/genetics.105.048975
Journal - Research Article
Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology & Evolution, 23(2), 254-267. doi: 10.1093/molbev/msj030
Journal - Research Article
Bryant, D., & Lagergren, J. (2006). Compatibility of unrooted phylogenetic trees is FPT. Theoretical Computer Science, 351(3), 296-302. doi: 10.1016/j.tcs.2005.10.033
Journal - Research Article
Lepage, T., Lawi, S., Tupper, P., & Bryant, D. (2006). Continuous and tractable models for the variation of evolutionary rates. Mathematical Biosciences, 199(2), 216-233. doi: 10.1016/j.mbs.2005.11.002
Journal - Research Article