Accessibility Skip to Global Navigation Skip to Local Navigation Skip to Content Skip to Search Skip to Site Map Menu

Dr Dominic Searles

(PhD University of Illinois)Generic Silhouette

Senior Lecturer

Office: Science III, room 220
Tel +64 3 479 7762
Email dominic.searles@otago.ac.nz

About

I am a Senior Lecturer in the Department of Mathematics and Statistics. I received my Ph.D in 2015 from the University of Illinois at Urbana-Champaign in 2015.

Teaching responsibilities

My teaching responsibilities include:

  • MATH 130 Fundamentals of Modern Mathematics 1
  • MATH 202 Linear Algebra
  • MATH 342 Modern Algebra
  • MATH 4AC
  • MATH 4AL Advanced Algebra

Research Interests

Algebra and Combinatorics.

^ Top of page

Publications

Mason, S., & Searles, D. (2022). The "Young" and "reverse" dichotomy of polynomials. Electronic Journal of Combinatorics, 29(3), 61. doi: 10.37236/10579

Searles, D. (2022). 0-Hecke-Clifford modules from diagrams. Séminaire Lotharingien de Combinatoire, 86B, 37. [Full Paper]

Bardwell, J., & Searles, D. (2022). 0-Hecke modules for Young row-strict quasisymmetric Schur functions. European Journal of Combinatorics, 102, 103494. doi: 10.1016/j.ejc.2021.103494

Assaf, S., & Searles, D. (2022). Kohnert polynomials. Experimental Mathematics, 31(1), 93-119. doi: 10.1080/10586458.2019.1588180

Mason, S., & Searles, D. (2021). Lifting the dual immaculate functions. Journal of Combinatorial Theory, Series A, 184, 105511. doi: 10.1016/j.jcta.2021.105511

Assaf, S., & Searles, D. (2022). Kohnert polynomials. Experimental Mathematics, 31(1), 93-119. doi: 10.1080/10586458.2019.1588180

Journal - Research Article

Bardwell, J., & Searles, D. (2022). 0-Hecke modules for Young row-strict quasisymmetric Schur functions. European Journal of Combinatorics, 102, 103494. doi: 10.1016/j.ejc.2021.103494

Journal - Research Article

Mason, S., & Searles, D. (2022). The "Young" and "reverse" dichotomy of polynomials. Electronic Journal of Combinatorics, 29(3), 61. doi: 10.37236/10579

Journal - Research Article

Mason, S., & Searles, D. (2021). Lifting the dual immaculate functions. Journal of Combinatorial Theory, Series A, 184, 105511. doi: 10.1016/j.jcta.2021.105511

Journal - Research Article

Monical, C., Pechenik, O., & Searles, D. (2021). Polynomials from combinatorial K-theory. Canadian Journal of Mathematics / Journal canadien de mathématiques, 73(1), 29-62. doi: 10.4153/S0008414X19000464

Journal - Research Article

Searles, D. (2020). Indecomposable 0-Hecke modules for extended Schur functions. Proceedings of the American Mathematical Society, 148(5), 1933-1943. doi: 10.1090/proc/14879

Journal - Research Article

Searles, D. (2020). Polynomial bases: Positivity and Schur multiplication. Transactions of the American Mathematical Society, 373(2), 819-847. doi: 10.1090/tran/7670

Journal - Research Article

Pechenik, O., & Searles, D. (2019). Decompositions of Grothendieck polynomials. International Mathematics Research Notices, 2019(10), 3214-3241. doi: 10.1093/imrn/rnx207

Journal - Research Article

Pechenik, O., & Searles, D. (2018). Deformed cohomology of flag varieties. Mathematical Research Letters, 25(2), 649-657. doi: 10.4310/MRL.2018.v25.n2.a15

Journal - Research Article

Assaf, S., & Searles, D. (2017). Schubert polynomials, slide polynomials, Stanley symmetric functions and quasi-Yamanouchi pipe dreams. Advances in Mathematics, 306, 89-122. doi: 10.1016/j.aim.2016.10.015

Journal - Research Article

Searles, D. (2016). Root-theoretic Young diagrams and Schubert calculus II. Journal of Combinatorics, 7(1), 159-203. doi: 10.4310/JOC.2016.v7.n1.a7

Journal - Research Article

Searles, D., & Yong, A. (2016). Root-theoretic Young diagrams and Schubert calculus: Planarity and the adjoint varieties. Journal of Algebra, 448, 238-293. doi: 10.1016/j.jalgebra.2015.09.039

Journal - Research Article

Searles, D., & Slinko, A. (2015). Noncoherent initial ideals in exterior algebras. Beiträge zur Algebra und Geometrie, 56(2), 759-762. doi: 10.1007/s13366-015-0239-5

Journal - Research Article

Chevyrev, I., Searles, D., & Slinko, A. (2013). On the number of facets of polytopes representing comparative probability orders. Order, 30(3), 749-761. doi: 10.1007/s11083-012-9274-0

Journal - Research Article

Searles, D. (2022). 0-Hecke-Clifford modules from diagrams. Séminaire Lotharingien de Combinatoire, 86B, 37. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Pechenik, O., & Searles, D. (2020). Asymmetric Function Theory. In J. Hu, C. Li & L. C. Mihalcea (Eds.), Schubert Calculus and Its Applications in Combinatorics and Representation Theory: Springer Proceedings in Mathematics & Statistics (Vol. 332). (pp. 73-112). Singapore: Springer. doi: 10.1007/978-981-15-7451-1_5

Conference Contribution - Published proceedings: Full paper

Assaf, S., & Searles, D. (2017). Slide polynomials. Séminaire Lotharingien de Combinatoire, 78B, #11. [Full Paper]

Conference Contribution - Published proceedings: Full paper

Searles, D., & Yong, A. (2013). Root-theoretic Young diagrams, Schubert calculus and adjoint varieties. DMTCS Proceedings, AS, (pp. 493-502). Retrieved from https://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/index.html

Conference Contribution - Published proceedings: Full paper

Searles, D. (2018). Fundamental slide polynomials and their applications. Proceedings of the New Zealand Mathematical Society Colloquium. (pp. 32). Retrieved from http://nzmathsoc.org.nz/colloquium2018

Conference Contribution - Published proceedings: Abstract

Assaf, S., & Searles, D. (2017). Kohnert polynomials. arXiv. Retrieved from https://arxiv.org/abs/1711.09498

Working Paper; Discussion Paper; Technical Report

Assaf, S., & Searles, D. (2017). Kohnert tableaux and a lifting of quasi-Schur functions (v2). arXiv. Retrieved from https://arxiv.org/abs/1609.03507v2

Working Paper; Discussion Paper; Technical Report

Searles, D. (2017). Polynomial bases: Positivity and Schur multiplication. arXiv. Retrieved from https://arxiv.org/abs/1707.01172

Working Paper; Discussion Paper; Technical Report

Pechenik, O., & Searles, D. (2014). Deformed cohomology of flag varieties. arXiv. Retrieved from https://arxiv.org/abs/1410.8070

Working Paper; Discussion Paper; Technical Report

Searles, D. (2018, August). Comparative probability orders and noncoherent initial ideals of exterior algebras. Mathematics Seminar Series, Department of Mathematics & Statistics, University of Otago, Dunedin, New Zealand. [Department Seminar].

Other Research Output

Searles, D. (2018, May). Kohnert polynomials. Mathematics Seminar Series, Department of Mathematics & Statistics, University of Otago, Dunedin, New Zealand. [Department Seminar].

Other Research Output

Searles, D. N. (2015). Root-theoretic Young diagrams and Schubert calculus (PhD). University of Illinois, Champaign, IL. Retrieved from http://hdl.handle.net/2142/87992

Awarded Doctoral Degree

More publications...