Accessibility Skip to Global Navigation Skip to Local Navigation Skip to Content Skip to Search Skip to Site Map Menu

Otago Medical School staff profiles

Dr Simon Jackson

PositionResearch Fellow
DepartmentDepartment of Microbiology and Immunology
QualificationsPhD (Biochemistry) BSc(Hons, First Class) (Plant Biotechnology)
Research summaryUnderstanding the interactions between bacterial viruses (phages) and their hosts.

Research

The overall aim of my research group is to understand the interactions between bacterial viruses (phages) and their hosts. Currently, we are funded to study bacterial phage defence systems, such as CRISPR-Cas adaptive immune systems.

With the rise of antimicrobial resistance (AMR) in bacterial pathogens, we urgently need to find new ways to treat bacterial infections. Exploiting phages as natural antimicrobials to kill bacterial pathogens, termed phage therapy, is a promising approach to address the AMR crisis. However, the success of phage therapy is dependent on understanding the complex interaction between phages and bacteria.

To address these challenges, we use a combination of bioinformatic, comparative genomics and molecular biology approaches.

Current research focus

  • Understanding how bacteria update their CRISPR-Cas adaptive immune systems, termed CRISPR adaptation
  • Exploring cooperation between diverse CRISPR-Cas systems to prevent viral escape from immunity
  • Discovery and characterisation of new types of phage defense system encoded by bacteria
  • The relationships between phage defense and symbiosis in Rhizobia

Applications

  • Exploiting phages to enhance legume productivity
  • Developing new types of molecular diagnostics to detect bacterial and viral infections
  • Exploiting phage-encoded enzymes as new antimicrobials
  • Developing technologies to unlock the potential of antimicrobial biosynthesis pathways encoded in metagenome libraries

Additional details

In 2017, Simon was awarded the IlluminaTM Emerging Researcher Award, as the top New Zealand Molecular Biologist within 5 years of PhD completion.

Publications

Jackson, S. A., Birkholz, N., Malone, L. M., & Fineran, P. C. (2019). Imprecise spacer acquisition generates CRISPR-Cas immune diversity through primed adaptation. Cell Host & Microbe, 25, 250-260. doi: 10.1016/j.chom.2018.12.014

Malone, L. M., Warring, S. L., Jackson, S. A., Warnecke, C., Gardner, P. P., Gumy, L. F., & Fineran, P. C. (2020). A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nature Microbiology, 5, 48-55. doi: 10.1038/s41564-019-0612-5

Jackson, S. A., & Fineran, P. C. (2019). Bacterial dormancy curbs phage epidemics. Nature, 570, 173-174. doi: 10.1038/d41586-019-01595-8

Birkholz, N., Fagerlund, R. D., Smith, L. M., Jackson, S. A., & Fineran, P. C. (2019). The autoregulator Aca2 mediates anti-CRISPR repression. Nucleic Acids Research, 47(18), 9658-9665. doi: 10.1093/nar/gkz721

Nicholson, T. J., Jackson, S. A., Croft, B. I., Staals, R. H. J., Fineran, P. C., & Brown, C. M. (2019). Bioinformatic evidence of widespread priming in type I and II CRISPR-Cas systems. RNA Biology, 16(4), 566-576. doi: 10.1080/15476286.2018.1509662

Journal - Research Article

Malone, L. M., Warring, S. L., Jackson, S. A., Warnecke, C., Gardner, P. P., Gumy, L. F., & Fineran, P. C. (2020). A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nature Microbiology, 5, 48-55. doi: 10.1038/s41564-019-0612-5

Birkholz, N., Fagerlund, R. D., Smith, L. M., Jackson, S. A., & Fineran, P. C. (2019). The autoregulator Aca2 mediates anti-CRISPR repression. Nucleic Acids Research, 47(18), 9658-9665. doi: 10.1093/nar/gkz721

Jackson, S. A., Birkholz, N., Malone, L. M., & Fineran, P. C. (2019). Imprecise spacer acquisition generates CRISPR-Cas immune diversity through primed adaptation. Cell Host & Microbe, 25, 250-260. doi: 10.1016/j.chom.2018.12.014

Nicholson, T. J., Jackson, S. A., Croft, B. I., Staals, R. H. J., Fineran, P. C., & Brown, C. M. (2019). Bioinformatic evidence of widespread priming in type I and II CRISPR-Cas systems. RNA Biology, 16(4), 566-576. doi: 10.1080/15476286.2018.1509662

Hampton, H. G., Jackson, S. A., Fagerlund, R. D., Vogel, A. I. M., Dy, R. L., Blower, T. R., & Fineran, P. C. (2018). AbiEi binds cooperatively to the Type IV abiE toxin-antitoxin operator via a positively-charged surface and causes DNA bending and negative autoregulation. Journal of Molecular Biology, 430(8), 1141-1156. doi: 10.1016/j.jmb.2018.02.022

Jackson, S. A., & Eaton-Rye, J. J. (2017). Modular growth vessels for the cultivation of the cyanobacterium Synechococcus sp. PCC 7002. New Zealand Journal of Botany, 55(1), 14-24. doi: 10.1080/0028825X.2016.1231123

Silas, S., Lucas-Elio, P., Jackson, S. A., Aroca-Crevillén, A., Hansen, L. L., Fineran, P. C., … Sánchez-Amat, A. (2017). Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems. eLIFE, 6, e27601. doi: 10.7554/eLife.27601

Jackson, S. A., McKenzie, R. E., Fagerlund, R. D., Kieper, S. N., Fineran, P. C., & Brouns, S. J. J. (2017). CRISPR-Cas: Adapting to change. Science, 356(6333), eaal5056. doi: 10.1126/science.aal5056

Patterson, A. G., Jackson, S. A., Taylor, C., Evans, G. B., Salmond, G. P. C., Przybilski, R., Staals, R. H. J., & Fineran, P. C. (2016). Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems. Molecular Cell, 64(6), 1102-1108. doi: 10.1016/j.molcel.2016.11.012

Staals, R. H. J., Jackson, S. A., Biswas, A., Brouns, S. J. J., Brown, C. M., & Fineran, P. C. (2016). Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR–Cas system. Nature Communications, 7, 12853. doi: 10.1038/ncomms12853

Jackson, S. A., Eaton-Rye, J. J., Bryant, D. A., Posewitz, M. C., & Davies, F. K. (2015). Dynamics of photosynthesis in the glycogen-deficient glgC mutant of Synechococcus sp. PCC 7002. Applied & Environmental Microbiology, 81(18), 6210-6222. doi: 10.1128/aem.01751-15

Jackson, S. A., & Eaton-Rye, J. J. (2015). Characterization of a Synechocystis sp. PCC 6803 double mutant lacking the CyanoP and Ycf48 proteins of Photosystem II. Photosynthesis Research, 124, 217-229. doi: 10.1007/s11120-015-0122-0

Jackson, S. A., Hervey, J. R. D., Dale, A. J., & Eaton-Rye, J. J. (2014). Removal of both Ycf48 and Psb27 in Synechocystis sp. PCC 6803 disrupts Photosystem II assembly and alters QĀ oxidation in the mature complex. FEBS Letters, 588(20), 3751-3760. doi: 10.1016/j.febslet.2014.08.024

Luo, H., Jackson, S. A., Fagerlund, R. D., Summerfield, T. C., & Eaton-Rye, J. J. (2014). The importance of the hydrophilic region of PsbL for the plastoquinone electron acceptor complex of Photosystem II. Biochimica et Biophysica Acta: Bioenergetics, 1837(9), 1435-1446. doi: 10.1016/j.bbabio.2014.02.015

Jackson, S. A., Hinds, M. G., & Eaton-Rye, J. J. (2012). Solution structure of CyanoP from Synechocystis sp. PCC 6803: New insights on the structural basis for functional specialization amongst PsbP family proteins. Biochimica et Biophysica Acta: Bioenergetics, 1817(8), 1331-1338. doi: 10.1016/j.bbabio.2012.02.032

Jackson, S. A., Fagerlund, R. D., Wilbanks, S. M., & Eaton-Rye, J. J. (2010). Crystal structure of PsbQ from Synechocystis sp. PCC 6803 at 1.8 Å: Implications for binding and function in cyanobacterial photosystem II. Biochemistry, 49(13), 2765-2767. doi: 10.1021/bi100217h

^ Top of page

Journal - Research Other

Jackson, S. A., & Fineran, P. C. (2019). Bacterial dormancy curbs phage epidemics. Nature, 570, 173-174. doi: 10.1038/d41586-019-01595-8

More publications...