Accessibility Skip to Global Navigation Skip to Local Navigation Skip to Content Skip to Search Skip to Site Map Menu

Researchers reveal how a queen bee's perfume helps her hold sway in the hive

Student on a laptop

Friday 31 July 2009 12:13pm

Honey Bee. In an exciting revelation that has potential implications for the apicultural industry, as well as for brain research, University of Otago researchers have succeeded in unravelling one of the mysteries that surround the honey bee queen's ability to control the behaviour of her workers.

Department of Zoology staff at the University of Otago two years ago discovered that queen bees manipulate their offspring's behaviour by releasing a pheromone that blocks aversive learning in young bees.

Professor Alison Mercer and Dr Kyle Beggs, in a paper just published in the international journal Current Biology, have now identified the molecular target of this pheromone. Queen pheromone - or more specifically a significant component of it, called homovanillyl alcohol or HVA - activates just one of three honey bee dopamine receptors, altering dopamine signalling in the brain and, consequently, the behaviour of young bees.

One of HVA's effects is to curb young bees' aversive learning ability (their ability to store the memory of unpleasant experiences in the brain and, consequently, to predict punishment). Why does the queen do this? Her pheromones have unpleasant effects; they impair motor activity and block worker ovary development. Preventing young bees from developing aversive memories against the queen's odours ensures young bees continue to tend the queen - thus safeguarding the future of the queen and, ultimately, the colony.

"Evolution has provided queen bees with a chemical that selectively blocks aversive learning but leaves reward learning intact," says Professor Mercer. "Two years ago we identified which chemical was responsible for these effects, and now we have discovered how the chemical works."

Establishing a link between changes at the behavioural level and events at a cellular and molecular level is generally very difficult because the processes underlying events such as learning and memory are complex.

"This is an important breakthrough because it will help us understand more clearly how memories are formed, and how brains tell the difference between memories that predict punishment and memories that predict reward."

"There is a great deal of evidence now that mechanisms underlying learning and memory are common to many species, and that important brain chemicals such as dopamine operate in very similar ways in vertebrate and invertebrate animals."

Professor Mercer and Dr Beggs are now starting to explore the effects of queen pheromone on vertebrate dopamine receptors. They are also establishing links with other researchers working on vertebrate systems to try to determine whether queen pheromone/HVA has potential for use in neurological research, as the importance of dopamine in brain function is widely recognized, if not fully understood.

Furthermore, with synthetic queen pheromones already in use as a tool for controlling queenless hives, Mercer believes their research findings could be applied in apiculture. Equally the insight they have provided into queen bee survival mechanisms could prove useful to efforts aimed at halting the current dramatic worldwide decline in honey bee populations, especially in countries like New Zealand which rely heavily on honey bees for crop pollination.

For further information please contact:

Professor Alison Mercer
Department of Zoology
University of Otago
Tel 64 3 479 7961

Megan McPherson
Head of Communications
University of Otago
Tel 021 279 5452

Background notes

Why honey bees?

Professor Mercer and Dr Beggs explain the advantages of working with bees:

"Honey bees are highly social animals with a sophisticated pheromonal communication system and an extraordinarily rich behavioural repertoire, all of which we can leverage to ask interesting questions about brain function."

"Their brain is also very accessible - bees continue to learn and remember things even when you are recording activity in their brain cells. They form enduring and highly selective memories that modify their behaviour in very interesting ways. They are fascinating, fun, and you quickly learn how not to get stung!"

A list of Otago experts available for media comment is available elsewhere on this website.

Electronic addresses (including email accounts, instant messaging services, or telephone accounts) published on this page are for the sole purpose of contact with the individuals concerned, in their capacity as officers, employees or students of the University of Otago, or their respective organisation. Publication of any such electronic address is not to be taken as consent to receive unsolicited commercial electronic messages by the address holder.