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Abstract

In this the first of three papers exploring the solution of systems of

ordinary differential equations that arise in PKPD we look at linear

constant coefficient ODEs. We will show that this type of ODEs can

be solved explicitly using matrix exponentials and that these solutions

can be evaluated simply using eigenvalues and eigenvectors. These

solutions allow us to evaluate the PKPD model quickly and accurately.

1 Introduction

Pharmacokinetic-pharmacodynamic (PKPD) models are used to describe the
time course of pharmacological response. Models that are developed to de-
scribe PKPD processes are often defined as ordinary differential equations
(ODEs) [1]. An ordinary differential equation is defined as a differential equa-
tion that depends on a single independent variable. In the case of ODEs for
PKPD the independent variable is invariably time therefore providing a de-
scription (or prediction) in the rate of change in some response(s) of interest
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over time. Specifying models as (a series of) ODEs allows users enormous
flexibility in which to present and explore the mechanistic content of the bi-
ological system. In PKPD we are generally interested in first order ODEs of
the form:

dy

dt
= f(t, y; β); y(t0) = y0 (1)

where t is time, y(t) is a vector of response variables (i.e. concentrations
and/or effects), β is a vector of parameters inherent in the model and y0 is
a vector of initial conditions at t = 0. In a mathematical sense and for the
sake of this paper ODEs can be formally grouped into three basic categories
depending on the way in which the parameters and response variables y enter
the model:

1. linear constant coefficient

2. linear variable coefficient

3. nonlinear

This grouping, although specified from a mathematical perspective, retains
useful distinctions which we see in PKPD (see [2] for background material
on ODEs). Note in case three we do not consider whether the coefficients
are constant or variable since the influence of nonlinearity on the system
outweighs any consideration of how the coefficients are expressed. The term
linear indicates that the right hand side of equation (1) is linear in the re-
sponse variable y. So for example the following ODE is linear in y.

dy

dt
= βy; y(t0) = y0 (2)

The term “constant coefficient” implies that the coefficients (β in this case)
are constant over the time range that the ODEs are to be solved. In contrast,
a variable coefficient is one where its value may change over the time range of
the ODE. In PKPD a linear variable coefficient ODE would be one where β
varied over time, commonly termed a time varying covariate. Such an ODE
may have the general form:

dy

dt
= β(t)y; y(t0) = y0 (3)
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Which remains linear in y, but is now time varying in β. Such systems are
common in PKPD where β would typically be a function of the concentration
of some substrate which itself changes over time. The last two groups are
those where the right hand side of the ODE is nonlinear in y. A common
PKPD example of such an ODE is:

dy

dt
=

β1y

β2 + y
; y(t0) = y0 (4)

In this case the ODE is nonlinear in y and (in this particular case) time-
constant in β. This latter observation makes little difference when consider-
ing its solution.

In PKPD we encounter all categories of ODEs in particular categories 2
and 3. For simplicity and in keeping with the PKPD literature we will use
the terms linear or nonlinear (to indicate linearity with respect to the re-
sponse) and time-constant and time-varying (to indicate the dependence of
the parameters on time). Division of ODEs into these categories is helpful
when we consider their solutions.

Integration of ODEs over time to provide a solution to the function of re-
sponse versus time is not easy. Five groups of methods are generally available
(although others are possible).

• exact solutions in closed form

• approximate solutions in closed form (e.g. where the solution is ap-
proximated by a finite series)

• iterative numerical forms that converge to the exact solution

• time-stepping solutions

• Monte-Carlo solutions

The key requirement for any method is a solution that is highly accurate and
computationally fast. It is clear that the first method is highly desirable as
the solution is accurate to machine precision and the speed is simply that re-
quired to evaluate the function (which is likely to be extremely rapid). In the
PKPD literature, however, the majority of reports describe the use of method
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four (time-stepping). Time-stepping procedures are numerical techniques for
computing solutions to the ODE by conditioning the next time step solution
on the immediate previous time point. Euler’s method (described in [3]) is
perhaps the simplest and is defined by a linear progression:

yn+1 = yn + hf(tn, yn; β) (5)

where (tn, yn) is the current point, h is the step size and f(t, y; β) is given by
the right hand side of equation (1). More accurate (and complex) methods
are used for actual data analysis such as Runge-Kutta methods [3], for ex-
ample MATLABs ode23 or ode45, that provide discrete approximations over
finite time periods. These methods are implemented in common software
packages such as ADAPT [4], NONMEM [5], WinBUGS [6] and Monolix [7].
The benefit of time-stepping methods is their generality for solving ODEs
that may arise from any of the three categories. They do have drawbacks
however, in that they tend to be slow and prone to propogation of errors.

It is relevant to reflect briefly on the importance of accurately defining the
model. PKPD models are generally developed by use of estimation tech-
niques. These techniques rely (at least to some extent) on evaluating the
likelihood which is itself a function of the model. In circumstances where
the maximum likelihood estimator is desired then it is not uncommon to
use search methods based on taking derivatives of the likelihood (see [8]).
Similarly in a design setting the model is the basis of the likelihood and the
information matrix is formed by the second partial derivative of the likeli-
hood with respect to the parameters. In both of these cases inaccuracies
in estimating the model may have considerable implications for dependent
processes.

This paper is part one of a three-part series that describe accurate and fast
solutions for ODEs that typically arise in PKPD analysis. In part I we de-
scribe well known solutions for linear ODEs with time-constant parameters.
In part II we propose solutions for linear ODEs with time-varying parameters
and finally in part III we describe new methods for solving nonlinear ODEs.

4



2 Linear constant coefficient ODEs

2.1 1-compartment model

Example 1. Suppose we give a bolus dose D of a drug (at t = 0) into
a central compartment with volume of distribution V and elimination rate
constant k (= CL/V , where CL is clearance). The amount in the central
compartment at time t, Am(t), will satisfy the ODE:

dAm

dt
= −kAm; Am(0) = D (6)

Here y(t) = Am(t), β = (CL, V ), and f(t, y; β) = −kAm. We can obviously
solve this ODE to get Am(t) and C(t):

Am(t) = De−kt; C(t) =
Am(t)

V
(7)

Of course this example is very simple, but it does illustrate that, rather
than the ODE itself, we are more interested in the solution of the ODE.
However, as we will see, the are many examples of ODEs in PKPD where it
may be difficult or impossible to write down an exact formula in closed form

for the solution (especially when the ODE is nonlinear).

2.2 Matrix exponentials

Here we show how the general form for the solution of linear constant co-
efficient ODEs is given by matrix exponentials. We will see how matrix
exponentials may be evaluated formally using Taylor series, but more practi-
cally evaluated in terms of the eigenvalues and eigenvectors of the respective
matrix. The first example in this section (example 2) is include for illus-
trative purposes as the series approximation to the exponential can be used
exactly. In the following section it is inconvenient to use the series expansion
exactly and an eigenvalue decomposition is shown for two PK examples.

2.2.1 A Taylor series expansion

For the linear ODE:
dy

dt
= Ay, y(0) = y0 (8)
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the solution is obviously
y(t) = etAy0 (9)

This same solution formula works when y is a vector of length n and A is
an n× n matrix. To define the exponential etA we may use the Taylor series
formula1:

etA = I +
tA

1!
+

t2A2

2!
+ ... (10)

- where I is the n × n identity matrix.
Example 2. For our first example we consider the simple first order linear
system:















dy1

dt
= y2,

dy2

dt
= −y1

which is essentially the equations for the simple harmonic oscillator (mass-
spring system) from physics. We choose this rather simple example because
we can easily evaluate the expontial etA using the Taylor series formula in
this case which highlights the utility of this method. Obviously this can be
written in the form (8) by letting:

y(t) =

[

y1(t)
y2(t)

]

, A =

[

0 1
−1 0

]

Now consider powers of the matrix A:

A2 =

[

0 1
−1 0

] [

0 1
−1 0

]

=

[

−1 0
0 −1

]

= −I,

A3 = −I × A = −A, A4 = −A × A = I

Generalizing this we get:

A2n = (−1)nI
A2n+1 = (−1)nA

}

n = 0, 1, 2, ...

If we separate the odd and even powers in (10) and use the formulae above
for the powers of A, we get:

etA =

(

I +
t2A2

2!
+

t4A4

4!
+ ...

)

+

(

tA

1!
+

t3A3

3!
+ ...

)

1Assuming that this sum converges.
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=

(

I +
t2(−1)1I

2!
+

t4(−1)2I

4!
+ ...

)

+

(

tA

1!
+

t3(−1)1A

3!
+ ...

)

=

(

1 −
t2

2!
+

t4

4!
− ...

)

I +

(

t −
t3

3!
+

t5

5!
− ...

)

A

= cos(t)I + sin(t)A

=

[

cos(t) sin(t)
− sin(t) cos(t)

]

Thus, according to (9), we get the solution:

y(t) =

[

y1(t)
y2(t)

]

= etA

[

y1(0)
y2(0)

]

=

[

cos(t) sin(t)
− sin(t) cos(t)

] [

y1(0)
y2(0)

]

2.2.2 Eigenvalue decomposition

In practice, however, it is often difficult to evaluate etA from the series di-
rectly. Instead it is more convenient to use the eigenvalue/eigenvector de-
composition of A:

A = PΛP−1; Λ =













λ1 0 ... 0
0 λ2 ... 0

0 0
. . .

...
0 0 ... λn













, P = [v1, ...,vn]

where λ1, ..., λn are the eigenvalues2 of A and v1, ...,vn are the corresponding
eigenvectors (i.e. n × 1 column-vectors). Using this decomposition we can
write etA as:

etA = PetΛP−1; etΛ =













etλ1 0 ... 0
0 etλ2 ... 0

0 0
. . .

...
0 0 ... etλn













2Here we assume that the eigenvalues are distinct and real, though this is not necessary

in general.
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Example 3. Our first linear PK example is a 1-compartment model with
first order input, governed by the linear system of ODEs:















dy1

dt
= −kay1, y1(0) = D

dy2

dt
= kay1 − ky2, y2(0) = 0

(11)

This example is useful to see the process as it is not so trivial that an eigen-
value solution is ungainly but sufficiently well known that the exact solution
is well recognised:

C(t) =
D

V

ka

(ka − k)
(e−kt − e−kat) (12)

In this example we derive the full process in order to illustrate how it is
achieved. It is not necessary in practice to go to this level since the solution
to PetΛP−1 is able to be evaluated in most software packages (e.g. MAT-
LAB) without recourse to the workings shown below. MATLAB code to
evaluate matrix exponentials which could be easily adapted to this example
is given in appendix A.

The matrix A is given by:

A =

[

−ka 0
ka −k

]

The product of A and y given by:
[

−ka 0
ka −k

] [

y1

y2

]

=

[

−kay1 + 0y2

kay1 − ky2

]

It is clear to see that this matrix represents the system of ODEs given in
equation (11). Evaluating the eigenvalues and eigenvectors for A we find:

P =

[

k − ka 0
ka 1

]

, Λ =

[

−ka 0
0 −k

]

Taking the Taylor series expansion for etA we get

etA = I +
tPΛP−1

1!
+

t2(PΛP−1)2

2!
+ ... (13)

= P (I +
tΛ

1!
+

t2Λ2

2!
+ ...)P−1 (14)

= PetΛP−1 (15)
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and hence substituting P and Λ into the following expression for the system

[

y1(t)
y2(t)

]

= PetΛP−1

[

D
0

]

=
1

k − ka

[

k − ka 0
ka 1

] [

e−kat 0
0 e−kt

] [

1 0
−ka k − ka

] [

D
0

]

we get:

[

y1(t)
y2(t)

]

=
1

k − ka

[

(k − ka)e
−kat 0

ka(e
−kat − e−kt) (k − ka)e

−kt

] [

D
0

]

This simplifies to:

[

y1(t)
y2(t)

]

=
D

k − ka

[

(k − ka)e
−kt

ka(e
−kat − e−kt)

]

(16)

Dividing the second row by V will provide the solution for the concentration
in the central compartment. It is clear to see in this simple example that
the solution is now available for each row of the derivative (i.e. for y1 & y2).
This allows the solution to be evaluated for each compartment (e.g. gut and
central) and if the values in these compartments are recorded it is simple to
naturally handle recursive dosing structures.

Example 4. The 2nd linear PK example is a standard multiple response
parent-metabolite model. Where a drug is given orally and then the parent
is irreversibly metabolised to a metabolite. Both parent and metabolite are
measured.


















































dy1

dt
= −k12y1, y1(0) = D

dy2

dt
= k12y1 − [k23 + fmk24 + (1 − fm)k2]y2 + k32y3, y2(0) = 0

dy3

dt
= k23y2 − k32y3, y3(0) = 0

dy4

dt
= fmk24y2 − k4y4, y4(0) = 0

(17)

where:

y1(t) = Amount of drug in gut at time t
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y2(t) = Amount in central compartment for parent

y3(t) = Amount in peripheral compartment for parent

y4(t) = Amount in central compartment for metabolite

kmn = Rate constant from compartment m to n.

fm = fraction of parent converted to metabolite

In this model samples would be taken from compartments 2 and 4, as in
figure 1. Thus writing the system (17) in the form (8):

1

23 4

D

k12

1 − fmk2

fm

k24

k23

k32

k4

Figure 1: Compartments in PK model

dy

dt
= Ay; y(0) = y0

where :

A =











−ka 0 0 0
ka −[k23 + fmk24 + (1 − fm)k2] k32 0
0 k23 −k32 0
0 fmk24 0 −k4











,

and

y = y(t) =











y1(t)
y2(t)
y3(t)
y4(t)











, y0 =











D
0
0
0










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We can use the eigenvalue/eigenvalue decomposition as before to write A =
PΛP−1, where:

Λ =











(−α − β)/2 0 0 0
0 (−α + β)/2 0 0
0 0 −k4 0
0 0 0 −ka











,

and

P =



















0 0 0 (ka−k4)
fmk24ka

{

α −
(k2

32
+k32k23−k2

a
)

k32−ka

}

−α+β−2k4

2fmk24

−α+β−2k4

2fmk24

0 k4−ka

fmk24

k23(α+β−2k4)
fmk24(α−2k32+β)

k23(−α+β−2k4)
fmk24(α−2k32+β)

0 k23k4−k23ka

fmk24k32−fmk24ka

1 1 1 1



















and
α = k2(1 − fm) + k23 + fmk24 + k32

β =
√

(k2(1 − fm) + k23 + fmk24)2 − 4k32(k2(1 − fm) + fmk24)

Thus, the solution to (17) is given by:











y1(t)
y2(t)
y3(t)
y4(t)











= PetΛP−1











D
0
0
0











where P and Λ are given above. This solution, with parameter values taken
from [9], is shown in figure 2. For simplicity and without loss of generality
we have omitted the 2nd compartment for the metabolite. In 3 we show
the error in the approximate solution generated using the MATLAB solver
ode45, i.e. the difference between the ode45 solution (approximate) and the
matrix exponential solution (exact). As mentioned prevoiusly, the matrix
exponential solution can be computed numerically and MATLAB code for
the parent-metabolite example is provided in appendix A.

Remark. One can also easily generalise the matrix exponential solution
method to apply to equations of the form:

dy

dt
= Ay + f, y(t0) = y0 (18)
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Figure 2: Profiles of y2(t) and y4(t)
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Figure 3: Errors in ODE solutions for
y2(t) and y4(t)

where f = (f1, ..., fn) is a vector of constants of the same length as y and A
is an invertible n × n matrix of constants (which is the case in our previous
examples). Then we can redefine the solution for y(t) to include f and express
this as z(t) to give:

z(t) = y(t + t0) + A−1f

Hence we get the linear ODE for z(t):

dz

dt
= Az, z(0) = y0 + A−1f

and from the solution to this we can find the solution to (18), i.e.

y(t) = z(t − t0) − A−1f = e(t−t0)A(y0 + A−1f) − A−1f

This solution is then easily ammenable to the standard matrix exponential
method.

2.3 Discussion

Defining PKPD models as ODEs and evaluating their solution is common
practice in pharmacometrics. Evaluation of the ODEs may be required in
order to perform simulations from the model or it may be required to provide
inference regarding some estimation or optimization procedure. For inferen-
tial purposes speed and accuracy are key factors when evaluating ODEs. The
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most common solution for ODEs involves numerical integration using time-
stepping algorithms such as the Runge-Kutta or similar methods. While
these algorithms are very powerful and generally robust they are not with-
out their difficulties. In a general sense time-stepping ODE solvers provide a
black box solution and unless a reference solution is available it is not easy to
determine whether the a priori choice of tolerance and ODE solver will best
meet the needs of the intended use of the model. Setting tolerance too small
(e.g. 1×10−8) may result in lengthy delays and in some circumstances exceed
the maximum number of iterations allowable for the ODE solver. Whereas
setting the tolerance too large may result in unacceptable errors that are not
uniformly distributed over the time domain (e.g. see Figure 3)). In addition,
the choice of non-stiff or stiff ODE solvers also poses a problem.

The ODE examples shown in this paper are defined as linear ODEs. Their
solution is relatively simple and provides a good foundation from which to
explore the more complex time varying and nonlinear ODE systems. For the
purpose of this paper and papers II and III that follow we define models as
closed form and exact based on the following nomenclature. Let our model
be defined as

y(t) = f(t; β). (19)

If the model can be defined as a function of time (i.e. y(t) = ...) then we
determine that the expression is in closed form; and if the model can be
defined by f(t; β) then we denote this as exact . The solutions provided for
the linear ODEs in this paper are therefore all closed form & exact . When we
address the case of time-varying systems we will introduce the idea of closed

form & approximate, where in this case the function f(t; β) is expressed to
the level of an analytic series or an integral that can be solved using Gaussian
quadrature. Finally, when addressing nonlinear ODEs we will also introduce
the solution as an approximate closed form such that y(t) ≈ .... In all of
these cases the approximations used can be expressed to the level of accuracy
required by the user and hence can be indistinguishable from a closed form

& exact solution. This differs from differential equations which are neither
closed form or exact . In addition, the solutions provided are much faster
than that provided time-stepping ODE.

As a rule it will be seen, other than for the most simple models, that
closed form exact solutions generally appear more complex and less general.
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Whereas time-stepping numerical solutions for ODEs appear general and due
to their black box nature simpler. Although this may appear a caveate in the
approaches described it will also be seen that standard numerical techniques
can be used to solve closed form exact solutions quickly and with a level of
accuracy similar to the analytic solution.

In conclusion, closed form and exact solutions, or close approximations to
both components, should be used whenever possible. Their utility not only
lies in the vastly superior speed of computation but also a greater level of
accuracy. These solutions also avoid the black box methods which can provide
erroneous results without warning.

A MATLAB code for matrix exponentials

A = [-Ka,0,0,0;Ka,-(K23+fm*K24+(1-fm)*K2),K32,0;0,K23,-K32, ...

0;0,fm*K24,0,-K4];

[P,Lam]=eig(A);

t=[.01:.01:8];

q=inv(P)*[D;0;0;0];

R = zeros(length(q),length(t));

for j=1:length(q)

R(j,:)=exp(Lam(j,j)*t)*q(j);

end

y = P*R;
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