FOUN046 Mathematics for Science

Section 1: General Information

1.1 Administrative Details

Subject:	Mathematics for Science
Code:	FOUN046
Stream:	Applied Science, Life Science and Health
	Science
Points:	12
Pre-requisite none but see note below	

1.2 Subject Workload

Number of timetabled hours	Number of Personal study	Total workload hours per
per week	hours per week	week
4	5	9

1.3 Pre-requisites

Students are required to have undertaken a pre-requisite subject.

Yes

A FOUN046 student should have a very good mathematical background in number, basic algebra and graphing. Knowledge of probability and statistics is desirable, but not necessary.

Students who do not have a strong background in senior school Mathematics are advised to do the Bridging Programme BP604 Mathematics for Science paper.

Alternatively, a student may be advised to enroll in the Extra Mathematics Programme.

1.4 Other resource requirements

List specialist facilities and/or equipment required for the delivery of this subject:

Scientific calculator/ access to blackboard/in class technology

Section 2: Academic Details

2.1 Subject Overview

Mathematical problem solving is an important technique for the solution of problems in any area of society. This paper aims to develop the ideas and concepts from Mathematics in such a way that the student develops their problem solving techniques in Mathematics and can apply the processes to Science. This paper will give the student a sound knowledge of mathematical concepts and prepare them for the demands of 100-level Science, Mathematical and Statistical papers at the University of Otago.

2.2 Learning Objectives and Outcomes

Learning Objectives

By the end of the paper, successful students will be able to:

- 1. explore the use of formulae, relationships, equations, expressions and statistical techniques in a variety of contexts
- 2. use number, algebra, probability, statistics and trigonometry in different situations and interpret their results
- 3. develop their mathematical skills in number, algebra, trigonometry, probability, statistics and some curve sketching
- 4. gain and demonstrate an understanding and appreciation of problem solving techniques in a variety of contexts.

Overview of Learning Outcomes:

Topic 1: CALCULATIONS IN SCIENCE

At the end of this topic a student should be able to: express numbers to the appropriate degree of accuracy express numbers in scientific notation express numbers as ordinary numbers express quantities in the appropriate SI units use the rules of exponents to solve problems use exponent models to solve problems use rates to compare two quantities of different units convert quantities from one unit to another use scale factors describe and find compass directions describe and find bearings use ratios to compare two or more quantities in the same units express two equal ratios as a proportion calculate proportions apply percentages to solve real-life problems solve problems involving ratios, rates and proportions

Topic 2: ALGEBRA IN SCIENCE

At the end of this topic a student should be able to: substitute numbers into a formula and calculate the answer change the subject of a formula form equations from given information and solve problems solve equations using algebra solve word problems using a range of algebraic techniques

Topic 3: LOGARITHMS

At the end of this topic a student should be able to: convert exponential numbers into logarithmic form convert logs into exponential form use the rules of logs to solve problems use the change of base formula to solve problems solve a range of problems using logs and/ or exponents.

Topic 4: TRIGONOMETRY IN SCIENCE

At the end of this topic a student should be able to: describe and use Pythagoras' theorem for right-angled triangles describe and use the three trig ratios for right-angled triangles calculate angles of elevation calculate angles of depression describe and find compass directions using trigonometry describe and find bearings using trigonometry Solve non right-angled triangles using the area rule Solve non right-angled triangles using the sine rule Solve non right-angled triangles using the cosine rule use trigonometrical notation appropriately solve trigonometrical problems convert degrees to radians and radians to degrees find arc length find the area of a sector solve problems using radian measure.

Topic 5: GRAPHING IN SCIENCE

At the end of this topic a student should be able to: plot and describe points on a graph find the gradient of a line describe the gradient of a line in terms of its direction and rate of change sketch lines using the gradient and y-intercept method sketch lines using the intercepts method describe the features of a graph in words sketch simultaneous linear equations solve graphically word problems involving lines describe the features of an exponential graph sketch exponential graphs use exponents and logarithms in growth model problems use exponents and logarithms in decay model problems graph exponential curves and use them to solve problems.

Unit 6: PROBABILITY

At the end of this topic a student should be able to: define probability calculate probabilities use and understand correct probability notations

find the probability of the union, intersection and complement of events

use Venn diagrams to find all the possible outcomes and calculate the probabilities of events calculate the odds for an event

use decision diagrams to find all the possible outcomes and calculate the probabilities of events with replacements and without replacements

use two way tables to find all the possible outcomes and calculate the probabilities of events apply probability theory to a range of problems.

Topic 7: STATISTICS

At the end of this topic a student should be able to:

identify and classify quantities into categorical data and numerical data, discrete and continuous data organize and interpret categorical and discrete data using statistical graphs such as bar graphs, pie charts and line graphs

organize, draw and interpret continuous data using statistical graphs such as histograms, frequency polygons and cumulative frequency curves

for a set of data calculate and interpret measures of central tendency such as mean, mode and median

for a set of data calculate, determine and interpret measures of dispersion, range, interquartile range, percentiles and standard deviation

compare, and comment on, sets of data

define and describe a range of sampling techniques

for a set of data, generate a statistical sample

interpret the spread of data in a normal distribution curve

calculate z-scores in a standard normal distribution

explain the significance of the z-score value

describe a normal distribution

interpret the spread of data in a normal distribution curve

calculate data values described as a normal distribution

calculate probabilities using the standard normal distribution tables

use estimation to compare samples and populations

use confidence intervals to describe samples or populations.

2.3 Subject Content

Topic 1: Calculations for Science

Topic 2: Algebra for Science

Topic 3: Logarithms

Topic 4: Trigonometry

Topic 5: Graphs for Science

Topic 6: Probability

Topic 7: Statistics.

2.4 Teaching Method/Strategies

FOUN046 will consist of 12 lectures and 36 tutorials over 12 weeks. Each week consists of one lecture and three tutorials. Working in groups and independent study will be used in classes.

2.5 Assessment

Assessment Type	When	Weighting	Learning Outcomes Assessed
Internal	Mid-Term Test Week 7		Topic 1 to 4 inclusive
	Statistical assignment	20%	
	Week 8 -11		
		10%	Topic 7 some
Final Examination	Week 13	70%	Topic 5 -7 inclusive

2.5.1 Assessment Strategy

Test 1 (in week 7) Duration: 45 minutes

Included: all work covered in topic 1, 2, 3 and 4.

The test will consist of two compulsory questions.

Question	Type of	Marks allocation
1	10 parts, short answer, 2 marks	20
	each.	
2	A problem solving question with	30
	3 parts, each worth 10 marks.	
Total		50

Assignment: Statistical Sampling: Week 8 - 11: Students will be issued with a problem solving exercise covering the topic Sampling. They are expected to complete the assignment and communicate their mathematical ideas using the correct mathematical language and produce their work to a high standard. Students will have about two weeks to complete the assignment.

2.5.2 Hurdle Requirement

In order to pass this paper, students must obtain an overall mark of 50% (C-) or better.

2.5.3 Assessment Details

Assessment	Content/ Format	Time	С	etails		
Internal Assessment	all work covered in	50 minutes	See above			
mid term test	topic 1 -4					
Internal Assessment	Written assignment	Over 3-4	See above			
Statistics Assignment		weeks				
Final Examination	all work covered in	2 hours	The examination will consist of four			
	topic 5-7		compulsory questions.			
				Question	Туре	Marks
						allocation
				1	10 parts,	40
					short	
					answer, 4	
					marks each	
				2 - 4	3 problem	60
					solving	
					context	
					questions,	
					worth 20	
					marks each.	
				Total		100

2.6 Prescribed and Recommended Reading

Prescribed Text: none. Use Student Workbooks Recommended Reading: none prescribed

Websites: none prescribed

3. Subject Details

Week	Lecture (1 hour)	Tutorial (1 hour)	Tutorial (1 hour)	Tutorial (1 hour)
1	Introduction to paper and Topic 1: Calculations for	Using the calculator: estimations, significant figures and	Scientific Notation	Ratios and Rates and Use of Units
	Science: Ratios and Rates	decimals places		<u>Set homework</u> : Ratios and Rates
2	Topic 1: Exponents	Working in Groups: Units, Conversion and Scaling using science applications	Exponents 1	Exponents 2
3	Topic 2 : Algebra for Science	substitution	transposition	Working in Groups: Percentages Accuracy and Rounding using science applications.
4	Topic 3 : Logarithms for Science	Forming equations 1	Forming equations 2	Working with logs 1: properties
5	Topic 4: Trigonometry for Science	Working with logs 2: application	right-angled triangles Set Homework: Angles of Elevation and Depression	Area of triangle, sine rule
6	Topic 5: Graphing for Science	Cosine rule	Circle and radians	Revision Test 1 or catch up
7	Mid Term tests	Mid term tests Maths Test (20%)	St lines:properties and sketch, st line models	Sketch exponential graphs
8	Topic 6: Probability: definition, union, intersection, complement, odds	Growth and Decay models	Union, intersection of events	Complement of events, Odds of events Assignment: Sampling issued and details
9	Topic 7: Statistics: Types of Data Measures of statistics	Successive Events, Decision Diagrams Assignment queries	Two Way Tables Assignment queries	Measures of Central Tendency & Spread 1
10	Normal Distribution	Measures of Central Tendency & Spread 2 Assignment queries	Measures of Central Tendency & Spread 3 Assignment queries	Assignment queries Normal Distribution Tables Assignment queries
11	Estimation Assignment: Sampling due (10%)	Normal Distribution Applications	Estimation	Working in Groups: Statistical Graphs: drawing and reading of graphs
12	Confidence Intervals	Confidence Intervals	Revision and catch up	Revision and catch up