
Caroline Shaw, Tony Blakely, June Atkinson and Peter Crampton

J. Epidemiol. Community Health 2005;59;638-644
doi:10.1136/jech.2004.032466

Updated information and services can be found at:
http://jech.bmjjournals.com/cgi/content/full/59/8/638

These include:

References This article cites 31 articles, 15 of which can be accessed free at:
http://jech.bmjjournals.com/cgi/content/full/59/8/638#BIBL

Rapid responses You can respond to this article at:
http://jech.bmjjournals.com/cgi/eletter-submit/59/8/638

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections Articles on similar topics can be found in the following collections

• Socioeconomic Determinants of Health (720 articles)
• Other Pediatrics (1548 articles)

Notes

To order reprints of this article go to:
http://www.bmjjournals.com/cgi/reprintform

To subscribe to Journal of Epidemiology and Community Health go to:
http://www.bmjjournals.com/subscriptions/

Caroline Shaw, Tony Blakely, June Atkinson, Peter Crampton

Background: Socioeconomic inequalities in child mortality are known to exist; however the trends in these inequalities have not been well examined. This study examines the trends in child mortality inequality between 1981 and 1999 against the background of the rapid and dramatic social and economic restructuring in New Zealand during this time period.

Methods: Record linkage studies of census and mortality records of all New Zealand children aged 0–14 years on census night 1981, 1986, 1991, 1996, each followed up for three years for mortality between ages 1–14 years. Socioeconomic position was measured using maternal education, household income, and highest occupational class in the household. Standardised mortality rates, rate ratios, and rates of differences as well as regression based measures of inequality were calculated.

Results: Mortality in all socioeconomic groups fell between 1981 and 1999. Socioeconomic inequality in child mortality existed by all measures of socioeconomic position, however only trends by income suggested a change over time: the relative index of inequality increased from 1.5 in 1981–84 to 1.8 in 1996–99 (p trend 0.06), but absolute inequality remained stable (slope index of inequality 15/100 000 in 1981–84 and 14/100 000 in 1996–99).

Conclusions: Dramatic changes in income in New Zealand possibly translated into increasing relative inequalities in child mortality by income, but not by education or occupational class. The a priori hypothesis that socioeconomic inequalities in child mortality would have increased in New Zealand during a period of rapid structural reform and widening income inequalities was only partly supported.

The existence of socioeconomic inequalities in child mortality is confirmed by most studies. However, temporal trends in socioeconomic inequalities in child mortality remain largely unquantified. Some studies have suggested an increase in inequalities in all cause mortality over time, one found a decline, and some found different trends by sex. Many of these studies have methodological problems. For example, being susceptible to the ecological fallacy, or to differential misclassification of socioeconomic position (SEP) over time because of use of area based measures of SEP, failing to use methodology that adjusts for changing socioeconomic group size over time, or being susceptible to numerator-denominator bias.

New Zealand is of particular interest in the context of trends in inequalities in child mortality. It underwent a significant period of economic and social restructuring through the 1980s and 1990s, similar to but more extensive than the (neo-liberal) changes that many other OECD countries experienced. There is evidence that the distribution of social determinants of health has changed over this period (see table 1). Despite these changes, child mortality has continued to fall, from 42/100 000 in 1980 to 24.6/100 000 in 2000 in 1–14 year olds (New Zealand Health Information Service), although it remains high by OECD standards. In contrast child health has deteriorated over this period by some measures, for example, there was an increase in avoidable hospital admissions and infectious disease admissions.

There is reason to hypothesise that socioeconomic inequalities in child mortality may have increased over this time period. Socioeconomic inequalities in adult mortality in relative terms increased in most developed countries, including New Zealand, over the 1980s and 1990s. If social and economic changes have an impact on inequalities in health, then it is plausible that inequalities in child mortality will respond more rapidly than inequalities in adult mortality. Why? Because there is less elapsed time in the life of a child for life course influences on health to have accumulated (putting aside intergenerational influences), perhaps increasing the ability to detect the recent impacts of changing socioeconomic conditions. Furthermore, the effects of health selection (that is, poor health causing a change in socioeconomic position, thereby inducing a (partly) spurious association of socioeconomic position and health) are largely removed as most child deaths are attributable to injury and the socioeconomic measures are based on parental characteristics.

However, the specific mechanisms by which macro level social and economic policy changes could translate into changing child mortality inequalities are not clear. Research suggests that political ideology (and therefore policy) is related to social inequalities and levels of health/mortality. Additionally there is increasing evidence of the detrimental effects of economic and social upheaval on adult and child health. However, there are few, if any, studies that have tried to directly link policy changes at the macro level with changes in socioeconomic inequalities in child mortality at the individual level.

METHODS

The data in this study came from the New Zealand census mortality study. Four population cohorts were constructed by anonymously and probabilistically linking individual census and mortality records over four time periods from 1981 to 1996. The New Zealand Health Information Service provided mortality data for 0–14 year olds for the periods 1981–84 and 1996–99. Socioeconomic inequalities in child mortality existed by all measures of socioeconomic position, however only trends by income suggested a change over time: the relative index of inequality increased from 1.5 in 1981–84 to 1.8 in 1996–99 (p trend 0.06), but absolute inequality remained stable (slope index of inequality 15/100 000 in 1981–84 and 14/100 000 in 1996–99).
1981–84, 1986–89, 1991–94, and 1996–99. Four cohorts were created, following up children aged 0–14 years on census night for three years, with analysis being conducted on those deaths that occurred in children aged 1–14 years. (Note that this study is not well suited to the study of infant mortality as it is a closed cohort.)

The percentage of eligible mortality records linked ranged from 66% to 71%, and the positive predictive value of the linkage was in excess of 96%,. Linkage varied by age, rurality, ethnicity, and small area deprivation, so linkage weights were applied to overcome any potential misclassification bias of mortality outcome caused by differential success of linkage. For example if 20 of 30 deaths in one cohort were linked then the weights applied to those deaths that were linked was 30/20 = 1.5. The weights were calculated in multiple small cells and then the non-linked census respondents were weighted down slightly to ensure that the total weighted number of children in the cohorts equaled the census night population.

To be included in the analysis children must have been at their usual residence on census night, which had to be a private dwelling. All family types were included in the analysis, however an adult over the age of 16, who was also in their usual residence, had to be present on census night. These restrictions resulted in the exclusion of 7%–9% of children in each cohort.

The “exposure”, socioeconomic position, was measured at the household and parental level. Three different measures of socioeconomic position were used. When income was available on all adults in the house, it was collated and equivalised for household size using the New Zealand specific Jensen equivalisation index. Incomes on households with children were consumer price index adjusted to 1996 and then attached to each child in the household. All children were ranked based on income and then divided into three equal sized income groups, with cut points of low (<$20 600), medium ($20 600 to <$33 000), and high (> $33 000) for calculation of the standardised rates.

Maternal education was classified using an intercensal classification of educational qualifications: no qualifications, school qualifications, and post-school qualifications. The determination of the child’s mother was probabilistic, as family relationships within a household were not recorded in all censuses. This was performed by identifying the woman in the household who was between 15 and 45 years older than the oldest and youngest children. The variable was tested against the 1986 cohort, in which family relationships were identified, resulting in a sensitivity of 93%, specificity of 71%, and positive predictive value of 96%.

The highest occupational class in the household was coded using the New Zealand specific Elley Irving occupational ranking.

Table 1

Changes to social determinants of child health over 1980s and 1990s in New Zealand

<table>
<thead>
<tr>
<th>Social determinant</th>
<th>Changes between 1981 and 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income:</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>Mean equivalent household disposable incomes in households with children fell in real dollar terms over the 1980s but recovered slightly in the latter half of the 1990s. Households with dependent children had incomes less than 90% on average over this time period.</td>
</tr>
<tr>
<td>Relative poverty</td>
<td>In 1987/88 14.6% of dependent children lived in households with an equivalised household income less than 60% of median (net of housing costs). This increased to 34.7% in 1991/92 and declined to 29.1% in 2000/01.</td>
</tr>
<tr>
<td>Inequality</td>
<td>The household equivalised disposable income Gini coefficient (across all New Zealand households, not just households with children) increased from 0.259 in 1982 to 0.322 in 1996.</td>
</tr>
<tr>
<td>Education</td>
<td>There has been a decline in the percentage of children with mothers with no formal qualifications (from 47% in 1981 to 27% in 1996) and a concomitant increase in the number of children with mothers with post-school qualifications over this period. (New Zealand Census of Households and Dwellings).</td>
</tr>
<tr>
<td>Occupational class/labour force status</td>
<td>There has been redistribution of the labour force. Fewer children have parents in lower occupational classes (49% in 1981 and 39% in 1996) and more children have parents in upper occupational classes (New Zealand Census of Households and Dwellings). There has also been an increase in the number of children with no parents in the labour force from 13.7% of children in 1986 to 23.4% in 1996.</td>
</tr>
</tbody>
</table>

Table 2

Number of deaths, person time, and age and ethnicity standardised mortality rates 1–14 years both sexes for each socioeconomic variable, by cohort period

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Income:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>325</td>
<td>525406</td>
<td>45.0</td>
<td>213</td>
</tr>
<tr>
<td>Medium</td>
<td>201</td>
<td>671669</td>
<td>33.6</td>
<td>171</td>
</tr>
<tr>
<td>High</td>
<td>186</td>
<td>610601</td>
<td>32.2</td>
<td>123</td>
</tr>
<tr>
<td>Missing</td>
<td>135</td>
<td>354562</td>
<td>37.3</td>
<td>144</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nil</td>
<td>405</td>
<td>1028330</td>
<td>43.5</td>
<td>258</td>
</tr>
<tr>
<td>School</td>
<td>159</td>
<td>466725</td>
<td>38.6</td>
<td>144</td>
</tr>
<tr>
<td>After school</td>
<td>96</td>
<td>409042</td>
<td>22.6</td>
<td>108</td>
</tr>
<tr>
<td>Missing</td>
<td>87</td>
<td>256414</td>
<td>39.0</td>
<td>63</td>
</tr>
<tr>
<td>Occupation class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groups 4–6</td>
<td>357</td>
<td>952899</td>
<td>38.3</td>
<td>252</td>
</tr>
<tr>
<td>Groups 1–3</td>
<td>282</td>
<td>977424</td>
<td>33.1</td>
<td>294</td>
</tr>
<tr>
<td>Non-active</td>
<td>105</td>
<td>231914</td>
<td>47.5</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>744</td>
<td>216228</td>
<td>38.0</td>
<td>648</td>
</tr>
</tbody>
</table>

Mortality rate and person time per 100000. Deaths are weighted number of deaths. Number of deaths rounded to base 3 as per Statistics New Zealand confidentiality requirements.
Standardised rates, rate ratios, rate differences, and 95% confidence intervals were calculated across levels of the socioeconomic factors, using the age and ethnic group composition of the 1991 NZ census population as the external standard. Results were standardised by ethnicity, as: ethnicity is a strong determinant of socioeconomic position; ethnicity is also a strong determinant of health independent of socioeconomic position; and the ethnic composition of New Zealand children changed over this period. The number of children identified as Maori or Pacific increased by 20.7% and 45% respectively, compared with a 13% decline in non-Maori/non-Pacific children between 1981 and 1999. Results are presented for both sexes together to maximise statistical power and because it is not possible for sex to confound the relation between socioeconomic position and child mortality—that is, while sex predicts child mortality it is not
associated with household measures of socioeconomic position.

To overcome the problem of changing socioeconomic group size over time, the relative and slope indices of inequality (RII and SII, respectively) were used to calculate population inequality in relative and absolute terms, respectively, in each cohort. The RII is equivalent to a relative risk measure for the poorest compared with the richest (or people with lowest compared with highest educational qualification or class), but uses mortality rates across all levels of income (and education or class) using regression. The SII is the absolute difference in mortality rates between the two extreme ends of education or class) using regression. The SII is the absolute inequality in relative and absolute terms, respectively, in each position. Only one other study of child mortality inequalities in all cause mortality ages 1–14 both sexes, by cohort

<table>
<thead>
<tr>
<th></th>
<th>Relative SRR (95%CI)</th>
<th>Relative RII (95%CI)</th>
<th>Absolute (per 100000) SRR (95%CI)</th>
<th>Absolute SII (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981–84</td>
<td>1.4 (1.1 to 1.8)</td>
<td>1.5 (1.0 to 2.2)</td>
<td>13 (3 to 23)</td>
<td>15 (1 to 29)</td>
</tr>
<tr>
<td>1986–89</td>
<td>1.4 (1.0 to 1.8)</td>
<td>1.6 (1.0 to 2.4)</td>
<td>12 (1 to 22)</td>
<td>15 (0 to 29)</td>
</tr>
<tr>
<td>1991–94</td>
<td>1.5 (1.1 to 2.1)</td>
<td>1.8 (1.1 to 3.0)</td>
<td>11 (2 to 19)</td>
<td>15 (3 to 28)</td>
</tr>
<tr>
<td>1996–99</td>
<td>1.6 (1.2 to 2.1)</td>
<td>1.8 (1.1 to 2.9)</td>
<td>11 (4 to 17)</td>
<td>14 (8 to 20)</td>
</tr>
<tr>
<td>p (trend)</td>
<td>0.09</td>
<td>0.06</td>
<td>0.08</td>
<td>0.12</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981–84</td>
<td>1.9 (1.4 to 2.6)</td>
<td>2.2 (1.5 to 3.4)</td>
<td>21 (12 to 29)</td>
<td>29 (13 to 45)</td>
</tr>
<tr>
<td>1986–89</td>
<td>1.0 (0.8 to 1.3)</td>
<td>1.0 (0.7 to 1.6)</td>
<td>0.0 (9 to 19)</td>
<td>1 (17 to 19)</td>
</tr>
<tr>
<td>1991–94</td>
<td>1.5 (1.1 to 1.9)</td>
<td>2.0 (1.3 to 3.0)</td>
<td>11 (4 to 18)</td>
<td>17 (6 to 28)</td>
</tr>
<tr>
<td>1996–99</td>
<td>1.4 (1.1 to 1.8)</td>
<td>1.7 (1.1 to 2.6)</td>
<td>9 (2 to 17)</td>
<td>13 (3 to 22)</td>
</tr>
<tr>
<td>p (trend)</td>
<td>0.77</td>
<td>0.79</td>
<td>0.42</td>
<td>0.57</td>
</tr>
<tr>
<td>Occupational class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981–84</td>
<td>1.2 (0.9 to 1.4)</td>
<td>1.7 (1.2 to 2.6)</td>
<td>5 (2 to 13)</td>
<td>19 (1 to 36)</td>
</tr>
<tr>
<td>1986–89</td>
<td>0.9 (0.7 to 1.1)</td>
<td>0.9 (0.6 to 1.4)</td>
<td>3 (10 to 5)</td>
<td>2 (10 to 6)</td>
</tr>
<tr>
<td>1991–94</td>
<td>1.6 (1.2 to 2.1)</td>
<td>2.4 (1.3 to 4.4)</td>
<td>11 (5 to 18)</td>
<td>20 (1 to 38)</td>
</tr>
<tr>
<td>1996–99</td>
<td>1.2 (0.9 to 1.6)</td>
<td>1.4 (0.9 to 2.3)</td>
<td>5 (1 to 11)</td>
<td>8 (1 to 19)</td>
</tr>
<tr>
<td>p (trend)</td>
<td>0.60</td>
<td>0.99</td>
<td>0.71</td>
<td>0.84</td>
</tr>
</tbody>
</table>

SRR and SRR are for low/high for each variable, RII and SII include all children with the socioeconomic variable. *Occupational class comparisons are restricted to children with at least one adult in the household in the labour force.

The occupational class groups also each showed a decline in mortality. There was weaker evidence of mortality gradients within occupational class and the 95% confidence interval of the rate ratio only excluded 1.0 in 1991–94. However the RII and SII, which take into account the changing group size and use a greater number of groups, are more suggestive of mortality gradients by occupational class. There was no clear trend in mortality inequality by occupational class over time.

RESULTS

Table 2 shows the number of deaths and person time in each cohort. Between 1981 and 1999 there was a change in the distribution of education and occupational class. Standardised mortality rates are shown in figure 1 and table 2. Mortality declined in all groups, but socioeconomic differences in child mortality existed during all cohorts and for all socioeconomic factors (except education and occupational class in 1986–89).

Mortality in all income groups declined from 1981–84 to 1996–99, although more in the high income group (41%, p trend 0.03) than the middle (26% p trend 0.08) and low income groups (35% p trend 0.03). Trends in mortality inequality by income are seen in table 3. These show an increase in the relative index of inequality from 1.5 to 1.8 between 1981–84 and 1996–99, which is of borderline significance (p trend 0.06). There is also overlap of the confidence intervals of these values. There was little, if any change, in absolute inequality over time as measured by the slope index of inequality.

Mortality rates declined in the no qualification and school qualification groups, but showed some variation in the post-school qualification group (possibly because of the small numbers of children in this group in the earlier cohorts). The effect measures show the presence of both relative and absolute inequality in child mortality in all cohorts, except 1986–89, but there is no clear trend over time.

DISCUSSION

Mortality rates decreased for children in all socioeconomic groups between 1981–84 and 1996–99. However, socioeconomic gradients in mortality were present in most cohorts and by most measures of socioeconomic position. These results are suggestive (but not incontrovertibly) of an increase in relative (but not absolute) child mortality differences by income in New Zealand between 1981–84 and 1996–99. However, by maternal education and parental occupational class there was no clear trend in socioeconomic inequalities in child mortality.

A strength of this study, in relation to previous studies looking at trends in child mortality, is the use of direct measurement of a child's socioeconomic position by individual and household census data—not the reliance on neighbourhood or ecological measures of socioeconomic position. Only one other study of child mortality inequalities...
Policy implications

Policy makers need to consider inequalities in child mortality, not just adult mortality, when designing and implementing policies that have an impact on the socioeconomic determinants of health—particularly income distribution.
data allows us to establish that the non-labour force group in this study consists largely of children who live in single parent households, where no parent was active in the labour force (at least as it is formally defined). Previous analyses of NZCMS data have shown that this excess mortality in single parent households is attributable to low income, rather than the nature of the household. Given the increase in the number of single parent households over time this has important implications for policy makers.

Secondly, the increasing number of children with parents in this non-active group means that the trends by occupational class are inherently inaccurate. This study shows an almost doubling in the proportion of this non-labour force group between 1981–84 and 1996–99, and measures of trends in inequality by occupational class only use data from children within the occupational group. In adults exclusion of the economically inactive is estimated to underestimate the social class gradient by 25% for men and 60% for women. The exclusion of this group of children with the highest risk of mortality and the progressive increase in the size of this group would suggest that occupational class might not be an appropriate variable to be monitoring temporal trends in socioeconomic inequalities in child mortality in a population.

In theory, selection of a measure of socioeconomic position should be based on prior conceptualisation of the pathways between socioeconomic position and the health outcome of interest. Although pragmatism often prevails in selection of a measure of socioeconomic position, the differing trends and inherent problems within each measure of socioeconomic position in this study suggest that to adequately monitor socioeconomic inequalities in child mortality, measurement of multiple dimensions of socioeconomic position is required.

Considering the increase in relative inequalities in mortality by income, there are innumerable pathways by which changes in social determinants in child mortality may have acted. For example, it is possible that decreases in absolute income could place children in injury promoting environments (that is, unsafe cars, unfenced section, and unsupervised playing on streets). However, while specific pathways offer explanations, socioeconomic gradients occur in multiple causes of child mortality. Explanations of changes in inequalities in mortality must both encompass the underlying universal process and the micro-level pathways to each of these diverse causes of death and ill health. This explanation and theory is where ongoing efforts need to be focused.

SUMMARY STATISTICS NEW ZEALAND SECURITY STATEMENT

The New Zealand census mortality Study (NZCMS) is a study of the relation between socioeconomic factors and mortality in New Zealand, based on the integration of anonymised population census data from Statistics New Zealand and mortality data from the New Zealand Health Information Service. The project was approved by Statistics New Zealand as a Data Laboratory project under the Microdata Access Protocols in 1997. The datasets created by the integration process are covered by the Statistics Act and can be used for statistical purposes only. Only approved researchers who have signed Statistics New Zealand's declaration of secrecy can access the integrated data in the Data Laboratory. (A full security statement is in a technical report at http://www.wnmeds.ac.nz/nzcms-info.html.) For further information about confidentiality matters in regard to this study please contact Statistics New Zealand.

......................

Authors' affiliations

C Shaw, T Blakely, J Atkinson, P Crampton, Department of Public Health, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand

Funding: Caroline Shaw acknowledges salary support from the Australasian Faculty of Public Health Medicine during the course of this research. The New Zealand census-mortality study was initially funded by the Health Research Council of New Zealand. The Ministry of Health New Zealand is now the primary funding agency for this study.

Competing interests: none.

Ethical approval: the programme of work of the New Zealand census mortality study has approval from the Wellington Ethics Committee (reference number 98/7).

REFERENCES

www.jech.com

Reference withdrawn.

APHORISM OF THE MONTH ..

There is no defence against kindness (Samuel Levin)

How many times have you found that the way to deal with someone who is being particularly difficult in achieving a public health objective is by a concerted effort of being reasonable and keeping the agenda on an adult level?

JRA