Genotype testing and targeted therapy in lung cancer: Success and limitations in implementing a scientific advance

Sandar Tin Tin, Mark Elwood, Mark McKeage, Prashannata Khwaounjoo, Phyu Sin Aye, Angie Li, Karen Sheath, Phillip Shepherd, George Laking, Nicola Kingston, Christopher Lewis, Donald Love

The University of Auckland & Auckland District Health Board
1 February 2019
Lung cancer in New Zealand

➢ One of the most common cancers
 • 9% of all new cancer registrations (~2000 cases per year)
 • Non-squamous non-small cell lung cancer (NSCLC) is the most common subtype (~60% of all lung cancer cases).

➢ Leading cause of cancer mortality
 • ~18% of all cancer deaths (~1650 deaths per year)
 • One-year survival = ~30%
 • Five-year survival = ~11%
 (Māori: 6.5%; non-Māori: 11.9%)
 (Most deprived: 9.7%; least deprived: 13.0%)

EGFR targeted therapy

- Epidermal Growth Factor Receptor (EGFR) is a common oncogenic driver in non-squamous NSCLC.
- EGFR Tyrosine Kinase Inhibitors (TKIs) block downstream signalling pathways, and have been shown to improve progression-free survival.
Population-based cohort study in Northern NZ

- Involved all patients diagnosed with non-squamous NSCLC in four DHBs between 2010 and 2015.
- Data sources: NZ Cancer Registry, TestSafe, laboratory, pharmaceutical and medical records.
- 2701 eligible patients identified:
 - 51% - females
 - 17% - Māori; 10% - Pacific; 10% - Asian
 - 62% - adenocarcinoma
 - 52% - diagnosed with distant metastasis
 - 19% - diagnosed based on clinical investigation only
Testing prevalence
- 39.2% were tested for EGFR mutation(s).
- Higher testing prevalence in:
 - younger patients, females, Asians
 - patients with adenocarcinoma or local spread
 - patients from less deprived neighbourhoods
 - Patients from Waitemata DHB
- Very low testing prevalence (3%) in patients diagnosed based on clinical investigation only (i.e., no available tissue for testing).

Mutation prevalence
- Of the tested patients, 21.6% were mutation positive.
- Higher mutation prevalence in:
 - Females, Asians, non-smokers
 - Patients with adenocarcinoma
Time trends in testing prevalence, patient selection & mutation prevalence

- Testing prevalence increased after the commencement of routine testing.
- Patient selection decreased.
- Testing uptake was consistently low in:
 - patients aged over 80 years
 - Māori patients
 - patients diagnosed based on clinical investigation only

- Mutation prevalence decreased with increase in testing prevalence and decrease in patient selection.
- Mutation prevalence could be as low as 15.5% if all patients were tested.
- At least 11.5% of untested patients could be mutation positive.

Tin Tin et al. *Cancer Epidemiology* 2018;57:24-32
Impact of EGFR mutation testing

EGFR mutation testing improves patient survival, appropriate drug prescribing and response to EGFR-TKI treatment.

McKeage et al. Targeted Oncology 2017;12(5):663-75
Summary

<table>
<thead>
<tr>
<th>Success</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The uptake of EGFR mutation testing has improved over time.</td>
<td>EGFR mutation testing is still suboptimal:</td>
</tr>
<tr>
<td>EGFR mutation testing has improved:</td>
<td>• Only two-thirds were tested in 2015.</td>
</tr>
<tr>
<td>• appropriate drug prescribing</td>
<td>• Testing was low in Māori and 80+ year old patients.</td>
</tr>
<tr>
<td>• response to treatment</td>
<td>• Full uptake of testing was limited by a lack of availability of specimens for testing and variable testing referral practices.</td>
</tr>
<tr>
<td>• survival</td>
<td>Incomplete testing uptake has important implications:</td>
</tr>
<tr>
<td></td>
<td>• The mutation prevalence observed may not be accurate.</td>
</tr>
<tr>
<td></td>
<td>• Untested patients may not be treated appropriately.</td>
</tr>
</tbody>
</table>
Acknowledgements

- This work was supported by the Health Research Council of New Zealand (Ref: 13/981, 15/087; PI: Professor Mark McKeage).

- Sandar Tin Tin was supported by the Auckland Medical Research Foundation/Perpetual David and Cassie Anderson Postdoctoral Fellowship and Kelliher Charitable Trust Emerging Research Start-up Award.