Due to COVID-19 restrictions, a selection of on-campus papers will be made available via distance and online learning for eligible students.
Find out which papers are available and how to apply on our COVID-19 website
Electromagnetic potentials, mechanical properties of the electromagnetic field and their conservation laws, the Maxwell stress tensor, electromagnetic gauges, retarded potentials, Lienard-Wiechert potentials, fields of accelerating charges, and radiation.
Paper title | Advanced Electromagnetism |
---|---|
Paper code | PHSI425 |
Subject | Physics |
EFTS | 0.0833 |
Points | 10 points |
Teaching period | First Semester |
Domestic Tuition Fees (NZD) | $673.90 |
International Tuition Fees (NZD) | $2,981.97 |
- Limited to
- BSc(Hons), PGDipSci, MSc
- Contact
- terry.scott@otago.ac.nz
- Teaching staff
- Dr Terry Scott
- Textbooks
- Griffiths, D.J. Introduction to Electrodynamics, Fourth edition.
- Graduate Attributes Emphasised
- Global perspective, Interdisciplinary perspective, Lifelong learning, Scholarship,
Critical thinking, Information literacy, Self-motivation, Teamwork.
View more information about Otago's graduate attributes. - Learning Outcomes
- After completing this paper students are expected to:
- Be able to recast the electric and magnetic fields in terms of scalar and vector potentials and to recast Maxwell's equations in terms of these potentials
- Understand the concept of an electromagnetic gauge, in particular to understand the use and importance of the Coulomb and Lorentz gauges and be able to perform simple gauge transformations
- Understand the conservation of energy and linear momentum in the interaction between electromagnetic fields and matter and be able to use the Poynting vector to find the energy density, linear momentum density and angular momentum density of a system of electromagnetic fields, charges and currents
- Understand the concept of retarded time and retarded scalar and vector potentials be able to show that these potentials satisfy the appropriate Laplace equations
- Understand the Lienard-Wiechert potentials as special cases of retarded potentials, understand the physical significance of these potentials and be able to use them to analyse simple configurations of charges and currents
- Understand the production of electromagnetic radiation by accelerating charges
- Be able to derive and analyse the fields radiated by oscillating electric and magnetic dipoles