Overview
Eukaryote genomes and genome evolution; phylogenetics; cytogenetics and chromosomes; extensions of Mendelian genetics; genetic mapping in eukaryotes; genes in populations; quantitative genetics.
GENE 222 gives a broad coverage of all of the concepts that are central to modern eukaryote genetics including human genetics. As such it is directly relevant for students with an interest in any of the biological or biomedical sciences. The different parts of the paper are linked by a common theme of genetic analysis and the use of specific examples to illustrate general principles. The lecture course is complemented by a laboratory course that gives hands-on experience of many of the methods that are used in genetic analysis of eukaryotes.
About this paper
Paper title | Genes, Chromosomes and Populations |
---|---|
Subject | Genetics |
EFTS | 0.15 |
Points | 18 points |
Teaching period | Semester 2 (On campus) |
Domestic Tuition Fees ( NZD ) | $1,173.30 |
International Tuition Fees | Tuition Fees for international students are elsewhere on this website. |
- Prerequisite
- CELS 191 and 90 further points
- Recommended Preparation
- GENE 221 and BIOC 221
- Schedule C
- Science
- Eligibility
- Appropriate for students majoring in genetics, other biological and health sciences and molecular biotechnology.
- Contact
- More information link
- Teaching staff
Convenor: Dr Gillian MacKay (Genetics Programme)
Other teaching staff: Professor Jon Waters (Department of Zoology)
Associate Professor Janice Lord (Department of Botany)
Associate Professor Louise Bicknell (Department of Biochemistry)
Dr Martyn Kennedy (Department of Zoology)
Associate Professor Phil Wilcox (Department of Maths and Statistics)- Paper Structure
The lecture course is divided into seven blocks:
- Eukaryote genomes and genome evolution
- Phylogenetics
- Cytogenetics and chromosomes
- Extensions of Mendelian genetics
- Genetic mapping in eukaryotes
- Genes in populations
- Quantitative genetics
An additional lecture outlines Māori concepts of inheritance.
The lecture course is complemented by a laboratory course, which provides training in data analysis and relevant genetic methods, including Mendelian genetics and linkage, cytogenetics, working with Drosophila, genomics, population genetics and quantitative genetics.
- Teaching Arrangements
There are six weeks of laboratory classes, in three 2-week blocks, and students are assigned to one of four lab streams.
- Textbooks
The recommended text book for GENE 222 is: Introduction to Genetic Analysis (Griffiths, Doebley, Peichel and Wassarman), 12th edition. Earlier editions of this book are also satisfactory if you have access to a copy.
- Graduate Attributes Emphasised
- Global perspective, Interdisciplinary perspective, Scholarship, Communication, Critical thinking, Cultural understanding, Self-motivation, Teamwork.
View more information about Otago's graduate attributes. - Learning Outcomes
Students who successfully complete this paper will understand:
- Genomic variation within and between species
- How to construct and interpret phylogenetic trees
- The origins and diagnostic features of karyotypic variation
- The extensions of Mendelian genetics
- How to test alternative genetic hypotheses
- How to identify and map monogenic and complex disease genes
- How evolution is explained by principles of variation, heredity and selection
- Quantitative traits and the norm of reaction
- Heritability, QTLs and their uses
Timetable
Overview
Eukaryote genomes and genome evolution; phylogenetics; cytogenetics and chromosomes; extensions of Mendelian genetics; genetic mapping in eukaryotes; genes in populations; quantitative genetics.
GENE 222 gives a broad coverage of all of the concepts that are central to modern eukaryote genetics including human genetics. As such it is directly relevant for students with an interest in any of the biological or biomedical sciences. The different parts of the paper are linked by a common theme of genetic analysis and the use of specific examples to illustrate general principles. The lecture course is complemented by a laboratory course that gives hands-on experience of many of the methods that are used in the genetic analysis of eukaryotes.
About this paper
Paper title | Genes, Chromosomes and Populations |
---|---|
Subject | Genetics |
EFTS | 0.15 |
Points | 18 points |
Teaching period | Semester 2 (On campus) |
Domestic Tuition Fees | Tuition Fees for 2025 have not yet been set |
International Tuition Fees | Tuition Fees for international students are elsewhere on this website. |
- Prerequisite
- CELS 191 and 90 further points
- Recommended Preparation
- GENE 221 and BIOC 221
- Schedule C
- Science
- Eligibility
- Appropriate for students majoring in genetics, other biological and health sciences and molecular biotechnology.
- Contact
- More information link
- Teaching staff
Co-conveners: Dr Gillian MacKay (Genetics Programme) & Associate Professor Louise Bicknell (Department of Biochemistry)
Other teaching staff: Professor Jon Waters (Department of Zoology)
Associate Professor Janice Lord (Department of Botany)
Associate Professor Louise Bicknell (Department of Biochemistry)
Dr Martyn Kennedy (Department of Zoology)
Associate Professor Phil Wilcox (Department of Maths and Statistics)
Dr Nathan Kenny (Department of Biochemistry)
- Paper Structure
The lecture course is divided into seven blocks:
- Eukaryote genomes and genome evolution
- Phylogenetics
- Cytogenetics and chromosomes
- Extensions of Mendelian genetics
- Genetic mapping in eukaryotes
- Genes in populations
- Quantitative genetics
An additional lecture outlines Māori concepts of inheritance.
The lecture course is complemented by a laboratory course, which provides training in data analysis and relevant genetic methods, including Mendelian genetics and linkage, cytogenetics, working with Drosophila, genomics, population genetics and quantitative genetics.
- Teaching Arrangements
There are six weeks of laboratory classes, in three 2-week blocks, and students are assigned to one of four lab streams.
- Textbooks
The recommended text book for GENE 222 is: Introduction to Genetic Analysis (Griffiths, Doebley, Peichel and Wassarman), 12th edition. Earlier editions of this book are also satisfactory if you have access to a copy.
- Graduate Attributes Emphasised
- Global perspective, Interdisciplinary perspective, Scholarship, Communication, Critical thinking, Cultural understanding, Self-motivation, Teamwork.
View more information about Otago's graduate attributes. - Learning Outcomes
Students who successfully complete this paper will understand:
- Genomic variation within and between species
- How to construct and interpret phylogenetic trees
- The origins and diagnostic features of karyotypic variation
- The extensions of Mendelian genetics
- How to test alternative genetic hypotheses
- How to identify and map monogenic and complex disease genes
- How evolution is explained by principles of variation, heredity and selection
- Quantitative traits and the norm of reaction
- Heritability, QTLs and their uses