Red X iconGreen tick iconYellow tick icon
Help us improve our website. Take part in our 10 minute survey

    Overview

    Introduces the modern algebraic concepts of a group and a ring. These concepts occur throughout modern mathematics and this paper looks at their properties and some applications.

    Modern algebra is studied all over the world, perhaps not surprisingly in view of its international beginnings in the late 1700s with work of the Swiss mathematician Leonhard Euler, the French mathematician Joseph Louis Lagrange, and the German mathematician Carl Friedrich Gauss. Their work led to the introduction in the 1800s of the unifying abstract algebraic concepts of a group and a ring, the first of these pioneered by Arthur Cayley, the second by Richard Dedekind. These two notions of a group (a set with a standard operation, usually called multiplication) and a ring (a set with two operations, usually called addition and multiplication) are very important in many of the sciences as well as mathematics in both its pure and applied branches. Even after more than 100 years since their introduction, most of today’s research in modern algebra involves the study of either groups or rings (or both!)

    The learning aims of the paper are principally to develop the notions of groups and rings, to see how these arise in a variety of mathematical settings, and to establish their fundamental properties. We will also study practical applications of these objects to cryptography and to detecting/correcting errors that occur in transmission of data.

    About this paper

    Paper title Modern Algebra
    Subject Mathematics
    EFTS 0.15
    Points 18 points
    Teaching period Semester 2 (On campus)
    Domestic Tuition Fees ( NZD ) $981.75
    International Tuition Fees Tuition Fees for international students are elsewhere on this website.
    Prerequisite
    MATH 202
    Schedule C
    Arts and Music, Science
    Eligibility

    This paper will be of interest to anyone who wishes to see how algebraic properties and phenomena arising in different branches of mathematics and science can be described and understood using the concepts of groups and rings, and how these concepts can be applied to contemporary practical problems regarding private and accurate communciation of data across insecure or unreliable channels.

    Students who wish to pursue their interests in algebra should take this course as a foundation to more advanced papers in the theory of groups, Galois Theory, rings, modules and algebras.

    Contact

    For more information, contact MATH and COMO200-300 Level Advisor Jõrg Hennig at joerg.hennig@otago.ac.nz

    Teaching staff

    Dr Dominic Searles

    Paper Structure

    Main topics:

    • Groups; subgroups; homomorphism and isomorphism; cosets and normal subgroups; quotient groups; Lagrange’s theorem, RSA encryption
    • Rings; subrings; homomorphism and isomorphism; ideals; quotient rings; integral domains; fields; polynomial rings; factorisation in rings, error-correcting codes
    Teaching Arrangements

    Five lectures per fortnight and one weekly tutorial.

    Textbooks

    Recommended texts: Abstract Algebra, third edition by David S. Dummit and Richard M. Foote; Contemporary Abstract Algebra, eighth edition by Joseph A. Gallian.

    Graduate Attributes Emphasised
    Communication, Critical thinking.
    View more information about Otago's graduate attributes.
    Learning Outcomes
    Demonstrate the ability to use mathematical reasoning by writing proofs in the context of groups and rings.

    Timetable

    Semester 2

    Location
    Dunedin
    Teaching method
    This paper is taught On Campus
    Learning management system
    Other

    Lecture

    Stream Days Times Weeks
    Attend
    A1 Monday 10:00-10:50 29-35, 37-42
    Wednesday 11:00-11:50 29-35, 37-42
    Friday 11:00-11:50 29-35, 37-42

    Tutorial

    Stream Days Times Weeks
    Attend
    A1 Thursday 16:00-16:50 29-35, 37-42

    Overview

    Introduces the modern algebraic concepts of a group and a ring. These concepts occur throughout modern mathematics and this paper looks at their properties and some applications.

    Modern algebra is studied all over the world, perhaps not surprisingly in view of its international beginnings in the late 1700s with work of the Swiss mathematician Leonhard Euler, the French mathematician Joseph Louis Lagrange, and the German mathematician Carl Friedrich Gauss. Their work led to the introduction in the 1800s of the unifying abstract algebraic concepts of a group and a ring, the first of these pioneered by Arthur Cayley, the second by Richard Dedekind. These two notions of a group (a set with a standard operation, usually called multiplication) and a ring (a set with two operations, usually called addition and multiplication) are very important in many of the sciences as well as mathematics in both its pure and applied branches. Even after more than 100 years since their introduction, most of today’s research in modern algebra involves the study of either groups or rings (or both!)

    The learning aims of the paper are principally to develop the notions of groups and rings, to see how these arise in a variety of mathematical settings, and to establish their fundamental properties. We will also study practical applications of these objects to cryptography and to detecting/correcting errors that occur in transmission of data.

    About this paper

    Paper title Modern Algebra
    Subject Mathematics
    EFTS 0.15
    Points 18 points
    Teaching period Semester 2 (On campus)
    Domestic Tuition Fees Tuition Fees for 2025 have not yet been set
    International Tuition Fees Tuition Fees for international students are elsewhere on this website.
    Prerequisite
    MATH 202
    Schedule C
    Arts and Music, Science
    Eligibility

    This paper will be of interest to anyone who wishes to see how algebraic properties and phenomena arising in different branches of mathematics and science can be described and understood using the concepts of groups and rings, and how these concepts can be applied to contemporary practical problems regarding private and accurate communciation of data across insecure or unreliable channels.

    Students who wish to pursue their interests in algebra should take this course as a foundation to more advanced papers in the theory of groups, Galois Theory, rings, modules and algebras.

    Contact

    For more information, contact MATH and COMO200-300 Level Advisor Jõrg Hennig at joerg.hennig@otago.ac.nz

    Teaching staff

    Dr Dominic Searles

    Paper Structure

    Main topics:

    • Groups; subgroups; homomorphism and isomorphism; cosets and normal subgroups; quotient groups; Lagrange’s theorem, RSA encryption
    • Rings; subrings; homomorphism and isomorphism; ideals; quotient rings; integral domains; fields; polynomial rings; factorisation in rings, error-correcting codes
    Teaching Arrangements

    Five lectures per fortnight and one weekly tutorial.

    Textbooks

    Recommended texts: Abstract Algebra, third edition by David S. Dummit and Richard M. Foote; Contemporary Abstract Algebra, eighth edition by Joseph A. Gallian.

    Graduate Attributes Emphasised
    Communication, Critical thinking.
    View more information about Otago's graduate attributes.
    Learning Outcomes
    Demonstrate the ability to use mathematical reasoning by writing proofs in the context of groups and rings.

    Timetable

    Semester 2

    Location
    Dunedin
    Teaching method
    This paper is taught On Campus
    Learning management system
    Other
    Back to top