Red X iconGreen tick iconYellow tick icon
The University of Otago has launched a new brand. Find out more

Contact Details

Phone
+64 3 471 6277
Email
niranjan.ramesh@otago.ac.nz
Position
Teaching Fellow
Department
Department of Anatomy
Qualifications
B Tech (India) MSc (Sheffield) PhD (Otago)
Research summary
Biomaterials, tissue engineering and regenerative medicine
Teaching
  • HUBS 191 and HUBS 192, Human Body Systems
  • BIOA 201, Biocultural Human Skeletal Biology
  • ANAT242, Neurobiology
Memberships
  • European Society for Biomaterials (ESB)
  • Australasian Society for Biomaterials & tissue Engineering (ASBTE)
  • Clinical Anatomy Research Group (CARG)
  • Emerging Researchers Group (ERG)

Research

Niranjan's expertise lies in translational research in biomaterials and regenerative medicine. He maintains a keen interest in developing novel biomaterials derived from both natural and synthetic resources and modifying them to improve their functionality and biocompatibility to promote tissue regeneration.

Niranjan’s current projects include:

  1. Development of a smart toothpaste for improving oral hygiene and implant longevity (funded by Health Research Council NZ)
  2. Development of a novel bioactive bone substitute from New Zealand-sourced bovine bones for bone regeneration
  3. Development of bioactive biocomposites for repairing bone and dental defects
  4. Ionic substitutions in synthetic hydroxyapatite
  5. Development of novel temperature-sensitive hydrogels for bone tissue engineering

Additional details

Niranjan is passionate about facilitating conversations relating to mental health in the university community. Niranjan's campaign in collaboration with Silverline Otago focuses on advocating for better mental health support to students and early career researchers, and creating men's mental health awareness.

Publications

Ratnayake, J., Gould, M., Ramesh, N., Mucalo, M., & Dias, G. (2024). A porous fluoride-substituted bovine-derived hydroxyapatite scaffold constructed for applications in Bone Tissue Regeneration. Materials, 17, 1107. doi: 10.3390/ma17051107 Journal - Research Article

Ajay Sharma, L., Ramesh, N., Sharma, A., Ratnayake, J. T. B., Love, R. M., Alavi, S. E., Wilson, M. J., & Dias, G. J. (2023). In vitro effects of wool-derived keratin on human dental pulp-derived stem cells for endodontic applications. British Journal of Oral & Maxillofacial Surgery. Advance online publication. doi: 10.1016/j.bjoms.2023.08.240 Journal - Research Article

Snoddy, A. M. E., Vlok, M., Wheeler, B. J., Ramesh, N., Standen, V. G., & Arriaza, B. T. (2023). Reply to Mays and Brickley, 2023 "Dietary calcium versus vitamin D in rickets: A response to Vlok et al." American Journal of Human Biology, 35(4), e23882. doi: 10.1002/ajhb.23882 Journal - Research Other

Gould, M. L., Ratnayake, J. T. B., Ramesh, N., Powlay, T. J., Curnow, O. J., Staiger, M. P., & Dias, G. J. (2023). In vivo biocompatibility of non-derivatized cellulose regenerated using ionic liquids. Journal of Polymers & the Environment, 31, 1335-1350. doi: 10.1007/s10924-022-02640-w Journal - Research Article

Vlok, M., Snoddy, A. M. E., Ramesh, N., Wheeler, B. J., Standen, V. G., & Arriaza, B. T. (2023). The role of dietary calcium in the etiology of childhood rickets in the past and the present. American Journal of Human Biology, 35(2), e23819. doi: 10.1002/ajhb.23819 Journal - Research Article

Back to top