Accessibility Skip to Global Navigation Skip to Local Navigation Skip to Content Skip to Search Skip to Site Map Menu

Pharmacy staff profile

Dr Andrea Vernall

PositionLecturer
QualificationsBSc(Hons) PhD
Research summaryChemical biology and drug discovery

Research

My research focuses on the design, synthesis and biological analysis of molecules that target receptors in the human body that are implicated in various diseases and conditions. I have particular experience in using organic synthesis, medicinal chemistry and chemical biology as a means to develop biological tools to probe receptor structure and function. This information can then be used to design safer and more efficacious drugs.

Publications

Cooper, A., Singh, S., Hook, S., Tyndall, J. D. A., Vernall, A. J., & Alexander, S. P. H. (2017). Chemical tools for studying lipid-binding class A G protein-coupled receptors. Pharmacological Reviews, 69(3), 316-353. doi: 10.1124/pr.116.013243

Rizwan, S. B., & Vernall, A. J. (2017). To prohibit or regulate psychoactive substances: Has New Zealand got the right approach? BMJ, 356, j1195. doi: 10.1136/bmj.j1195

Stoddart, L. A., Vernall, A. J., Briddon, S. J., Kellam, B., & Hill, S. J. (2015). Direct visualisation of internalization of the adenosine A3 receptor and localization with arrestin3 using a fluorescent agonist. Neuropharmacology, 98, 68-77. doi: 10.1016/j.neuropharm.2015.04.013

Vernall, A. J., Hill, S. J., & Kellam, B. (2014). The evolving small-molecule fluorescent-conjugate toolbox for Class A GPCRs. British Journal of Pharmacology, 171(5), 1073-1084. doi: 10.1111/bph.12265

Vernall, A. J., Stoddart, L. A., Briddon, S. J., Ng, H. W., Laughton, C. A., Doughty, S. W., … Kellam, B. (2013). Conversion of a non-selective adenosine receptor antagonist into A3-selective high affinity fluorescent probes using peptide-based linkers. Organic & Biomolecular Chemistry, 11(34), 5673-5682. doi: 10.1039/c3ob41221k

Journal - Research Article

Rizwan, S. B., & Vernall, A. J. (2017). To prohibit or regulate psychoactive substances: Has New Zealand got the right approach? BMJ, 356, j1195. doi: 10.1136/bmj.j1195

Cooper, A., Singh, S., Hook, S., Tyndall, J. D. A., Vernall, A. J., & Alexander, S. P. H. (2017). Chemical tools for studying lipid-binding class A G protein-coupled receptors. Pharmacological Reviews, 69(3), 316-353. doi: 10.1124/pr.116.013243

Stoddart, L. A., Vernall, A. J., Briddon, S. J., Kellam, B., & Hill, S. J. (2015). Direct visualisation of internalization of the adenosine A3 receptor and localization with arrestin3 using a fluorescent agonist. Neuropharmacology, 98, 68-77. doi: 10.1016/j.neuropharm.2015.04.013

Vernall, A. J., Hill, S. J., & Kellam, B. (2014). The evolving small-molecule fluorescent-conjugate toolbox for Class A GPCRs. British Journal of Pharmacology, 171(5), 1073-1084. doi: 10.1111/bph.12265

Vernall, A. J., Stoddart, L. A., Briddon, S. J., Ng, H. W., Laughton, C. A., Doughty, S. W., … Kellam, B. (2013). Conversion of a non-selective adenosine receptor antagonist into A3-selective high affinity fluorescent probes using peptide-based linkers. Organic & Biomolecular Chemistry, 11(34), 5673-5682. doi: 10.1039/c3ob41221k

Stoddart, L. A., Vernall, A. J., Denman, J. L., Briddon, S. J., Kellam, B., & Hill, S. J. (2012). Fragment screening at adenosine-A3 receptors in living cells using a fluorescence-based binding assay. Chemistry & Biology, 19(9), 1105-1115. doi: 10.1016/j.chembiol.2012.07.014

Vernall, A. J., Stoddart, L. A., Briddon, S. J., Hill, S. J., & Kellam, B. (2012). Highly potent and selective fluorescent antagonists of the human adenosine A3 receptor based on the 1,2,4-triazolo[4,3-a]quinoxalin-1-one scaffold. Journal of Medicinal Chemistry, 55(4), 1771-1782. doi: 10.1021/jm201722y

More publications...