
Senior Lecturer
Director of Studies for 200-300-level Mathematics
Office: Science III, room 215
Tel +64 3 479 7765
Email joerg.hennig@otago.ac.nz
About
Jörg completed a PhD in theoretical physics in 2007 under the supervision of Gernot Neugebauer at the Friedrich Schiller University Jena, Germany. After spending four years in Potsdam as a post-doctoral fellow at the Albert Einstein Institute, he was appointed at the University of Otago's Department of Mathematics and Statistics in 2011.
Teaching responsibilities
Teaching responsibilities include:
- COMO 303 Numerical Methods
- MATH 203 Calculus of Several Variables
- MATH 130 Fundamentals of Modern Mathematics 1
- MATH 4NT Analytic Number Theory
Research Interests
Jörg's primary research interests lie in the field of General Relativity — Albert Einstein's theory of gravitation. In particular, he is studying:
- axisymmetric and stationary spacetimes
- cosmological models
- numerical relativity
- the application of pseudo-spectral methods to the numerical solution of hyperbolic PDEs.
For more details, see this page: https://gravity.otago.ac.nz/people/jorg-hennig/81-2/
Publications
Hennig, J. (2023). The characteristic initial value problem for the conformally invariant wave equation on a Schwarzschild background. Classical & Quantum Gravity. Advance online publication. doi: 10.1088/1361-6382/acc2a9
Journal - Research Article
Arun, K. G., Belgacem, E., Benkel, R., Bernard, L., Berti, E., Bertone, G., … Frauendiener, J., … Hennig, J., … Zumalacárregui, M. (2022). New horizons for fundamental physics with LISA. Living Reviews in Relativity, 25, 4. doi: 10.1007/s41114-022-00036-9
Journal - Research Article
Hennig, J., Frauendiener, J., & Macedo, R. P. (2022). The conformally invariant wave equation near spacelike infinity on Minkowski, Schwarzschild and Kerr. Proceedings of the Australasian Society for General Relativity & Gravitation (ASGRG) 11th Australasian Conference on General Relativity & Gravitation. Retrieved from https://www.asgrg2021.org/
Conference Contribution - Published proceedings: Abstract
Hennig, J., & Macedo, R. P. (2021). Fully pseudospectral solution of the conformally invariant wave equation on a Kerr background. Classical & Quantum Gravity, 38(13), 135006. doi: 10.1088/1361-6382/abfd86
Journal - Research Article
Beyer, F., Frauendiener, J., & Hennig, J. (2020). Explorations of the infinite regions of spacetime. International Journal of Modern Physics D, 29(10), 2030007. doi: 10.1142/S0218271820300074
Journal - Research Article
Neugebauer, G., & Hennig, J. (2014). Stationary black-hole binaries: A non-existence proof. In J. Bičák & T. Ledvinka (Eds.), General relativity, cosmology and astrophysics. (pp. 209-228). Cham, Switzerland: Springer. doi: 10.1007/978-3-319-06349-2_9
Chapter in Book - Research
Hennig, J. (2023). The characteristic initial value problem for the conformally invariant wave equation on a Schwarzschild background. Classical & Quantum Gravity. Advance online publication. doi: 10.1088/1361-6382/acc2a9
Journal - Research Article
Arun, K. G., Belgacem, E., Benkel, R., Bernard, L., Berti, E., Bertone, G., … Frauendiener, J., … Hennig, J., … Zumalacárregui, M. (2022). New horizons for fundamental physics with LISA. Living Reviews in Relativity, 25, 4. doi: 10.1007/s41114-022-00036-9
Journal - Research Article
Hennig, J., & Macedo, R. P. (2021). Fully pseudospectral solution of the conformally invariant wave equation on a Kerr background. Classical & Quantum Gravity, 38(13), 135006. doi: 10.1088/1361-6382/abfd86
Journal - Research Article
Beyer, F., Frauendiener, J., & Hennig, J. (2020). Explorations of the infinite regions of spacetime. International Journal of Modern Physics D, 29(10), 2030007. doi: 10.1142/S0218271820300074
Journal - Research Article
Hennig, J. (2020). Axis potentials for stationary n-black-hole configurations. Classical & Quantum Gravity, 37, 19LT01. doi: 10.1088/1361-6382/abb116
Journal - Research Article
Hennig, J. (2019). On the balance problem for two rotating and charged black holes. Classical & Quantum Gravity, 36, 235001. doi: 10.1088/1361-6382/ab4f41
Journal - Research Article
Hennig, J. (2019). Smooth Gowdy-symmetric generalised Taub–NUT solutions in Einstein–Maxwell theory. Classical & Quantum Gravity, 36(7), 075013. doi: 10.1088/1361-6382/ab0be0
Journal - Research Article
Frauendiener, J., & Hennig, J. (2018). Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity. III: Nonspherical Schwarzschild waves and singularities at null infinity. Classical & Quantum Gravity, 35, 065015. doi: 10.1088/1361-6382/aaac8d
Journal - Research Article
Frauendiener, J., & Hennig, J. (2017). Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity. II: Schwarzschild background. Classical & Quantum Gravity, 34, 045005. doi: 10.1088/1361-6382/aa54c4
Journal - Research Article
Hennig, J. (2016). Gowdy-symmetric cosmological models with Cauchy horizons ruled by non-closed null generators. Journal of Mathematical Physics, 57, 082501. doi: 10.1063/1.4961151
Journal - Research Article
Hennig, J. (2016). New Gowdy-symmetric vacuum and electrovacuum solutions. Classical & Quantum Gravity, 33, 135005. doi: 10.1088/0264-9381/33/13/135005
Journal - Research Article
Beyer, F., & Hennig, J. (2014). An exact smooth Gowdy-symmetric generalized Taub–NUT solution. Classical & Quantum Gravity, 31(9), 095010. doi: 10.1088/0264-9381/31/9/095010
Journal - Research Article
Frauendiener, J., & Hennig, J. (2014). Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity. Classical & Quantum Gravity, 31(8), 085010. doi: 10.1088/0264-9381/31/8/085010
Journal - Research Article
Hennig, J. (2014). Geometric relations for rotating and charged AdS black holes. Classical & Quantum Gravity, 31(13), 135005. doi: 10.1088/0264-9381/31/13/135005
Journal - Research Article
Hennig, J. (2013). Fully pseudospectral time evolution and its application to 1 +1 dimensional physical problems. Journal of Computational Physics, 235, 322-333. doi: 10.1016/j.jcp.2012.10.040
Journal - Research Article
Beyer, F., & Hennig, J. (2012). Smooth Gowdy-symmetric generalized Taub–NUT solutions. Classical & Quantum Gravity, 29, 245017. doi: 10.1088/0264-9381/29/24/245017
Journal - Research Article
Neugebauer, G., & Hennig, J. (2012). Stationary two-black-hole configurations: A non-existence proof. Journal of Geometry & Physics, 62, 613-630. doi: 10.1016/j.geomphys.2011.05.008
Journal - Research Article
Ansorg, M., Hennig, J., & Cederbaum, C. (2011). Universal properties of distorted Kerr-Newman black holes. General Relativity & Gravitation, 43(5), 1205-1210. doi: 10.1007/s10714-010-1136-8
Journal - Research Article
Hennig, J., & Neugebauer, G. (2011). Non-existence of stationary two-black-hole configurations: The degenerate case. General Relativity & Gravitation, 43(11), 3139-3162. doi: 10.1007/s10714-011-1228-0
Journal - Research Article
Hennig, J., & Ansorg, M. (2010). Regularity of Cauchy horizons in S2 x S1 Gowdy spacetimes. Classical & Quantum Gravity, 27, 065010. doi: 10.1088/0264-9381/27/6/065010
Journal - Research Article
Hennig, J., Cederbaum, C., & Ansorg, M. (2010). A universal inequality for axisymmetric and stationary black holes with surrounding matter in the Einstein-Maxwell theory. Communications in Mathematical Physics, 293(2), 449-467. doi: 10.1007/s00220-009-0889-y
Journal - Research Article
Ansorg, M., & Hennig, J. (2009). Inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein-Maxwell theory. Physical Review Letters, 102, 221102. doi: 10.1103/PhysRevLett.102.221102
Journal - Research Article
Hennig, J., & Ansorg, M. (2009). A fully pseudospectral scheme for solving singular hyperbolic equations on conformally compactified space-times. Journal of Hyperbolic Differential Equations, 6(1), 161-184.
Journal - Research Article
Hennig, J., & Ansorg, M. (2009). The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein-Maxwell theory: Study in terms of soliton methods. Annales Henri Poincaré, 10(6), 1075-1095. doi: 10.1007/s00023-009-0012-0
Journal - Research Article