(MA, D.Phil (Oxon))
Head of Statistics
Director of Studies for 400-level and Honours Statistics
Director of Studies for postgraduate Statistics: Masters and PhD
Office: Science III, room 233
Tel +64 3 479 7605
Email martin.hazelton@otago.ac.nz
About
Martin Hazelton is a statistician with wide-ranging research interests (see below). He has worked previously at the University of Oxford, University College London, the University of Western Australia, and Massey University. Martin is editor-in-chief of the Australian and New Zealand Journal of Statistics.
Teaching responsibilities
teaching responsibilities include:
- STAT 110 Statistical Methods
- STAT 115 Introduction to Biostatistics
- STAT 310 Statistical Modelling
- STAT 405 Probability and Random Processes
Research Interests
I have a variety of research interests. These include:
Smoothing Methods
I have long been interested in kernel smoothing problems, and in particular spatially adaptive methods for multivariate data. Other areas of interest include kernel deconvolution problems and constrained spline smoothing.
Biostatistics and Applied Statistics
I have a keen interest in the development and application of statistical methods in medicine, particularly epidemiology and opthalmology.
Spatial Statistics
Through my interests in smoothing, networks, and geographical epidemiology, I have an evolving interest in spatial statistics.
I am Associate Investigator on a New Zealand Royal Society Marsden Fund grant entitled "A new generation of statistical models for spatial point process data" for 2020-2020. The project is led by my former PhD student Tilman Davies, and is in collaboration with Adrian Baddeley (Curtin University, Australia).
Statistical Modelling and Inference in Transportation Science
Transportation science generates a huge range of fascinating problems. I'm currently focused on network tomography (in essence, statistical methods for learning about high dimensional properties of network traffic flows based on lower dimensional observations), and modelling and inference for day-to-day dynamic traffic networks.
Statistical Linear Inverse Problems and Z-Polytope Sampling
Statistical linear inverse problems are characterized by the linear system y = Ax where y is a vector of observed data and x is the variable of principal interest. The configuration matrix A typically has (many) more columns than rows, so that the linear system is under-determined. A classic example is network tomography, where we want to know about traffic flows x on paths through the network but we observe only traffic counts y at various network locations. Other examples with the same structure include (re)sampling entries of a contingency table conditional on various marginal totals, counts of individual animals in capture-recapture experiments in ecology where misidentification may occur (so that the true counts x differ from the observed counts y), and assessment of items for biosecurity risk under stratified sampling.
When the data are counts, the observations y constrain the variables of interest x to lie in a Z-polytope - that is, the grid of integer valued coordinates (yellow dots in the figure to the right) within a multidimensional polyhedron. Practical methods of statistical inference (like MCMC) require that we sample vectors x lying in this Z-polytope. This is typically done using a random walk. The problem then is to construct a random walk that traverses the Z-polytope efficiently and yet always remains within its bounds. It turns out that this is a hard problem!
I have recently been awarded a Marsden Fund grant as lead researcher on the project "Inference for statistical linear inverse problems: theory and practice" (2021-2024), working with Rachel Fewster, Jesse Goodman (both University of Auckland) and Andrew Robinson (University of Melbourne). This research will examine methods of inference based on Z-polytope sampling, and also likelihood-based approaches using saddlepoint approximations (an area in which my Auckland-based collaborators are expert).
Other Research Topics
In addition to these medical areas, I have a general interest in the application of statistical methods. Indeed, one of the great things about working in statistics is that I've had the opportunity to look at a diverse range of intriguing problems from a wide variety of areas, from archaeology, to finance, to zoology.
Publications
Baddeley, A., Davies, T. M., Hazelton, M. L., Rakshit, S., & Turner, R. (2022). Fundamental problems in fitting spatial cluster process models. Spatial Statistics. Advance online publication. doi: 10.1016/j.spasta.2022.100709
Hazelton, M. L. (2022). The emergence of stochastic user equilibria in day-to-day traffic models. Transportation Research Part B: Methodological. Advance online publication. doi: 10.1016/j.trb.2022.02.010
Hazelton, M. L., & Davies, T. M. (2022). Pointwise comparison of two multivariate density functions. Scandinavian Journal of Statistics, 49, 1791-1810. doi: 10.1111/sjos.12565
Pirikahu, S., Jones, G., & Hazelton, M. L. (2021). Bayesian credible intervals for population attributable risk from case–control, cohort and cross-sectional studies. Australian & New Zealand Journal of Statistics, 63(4), 639-657. doi: 10.1111/anzs.12352
Hazelton, M. L., & Turner, R. (2021). A Festschrift for Adrian Baddeley. Australian & New Zealand Journal of Statistics, 63(1), 1-5. doi: 10.1111/anzs.12322
Hazelton, M. L. (2016). Kernel smoothing methods. In A. B. Lawson, S. Banerjee, R. P. Haining & M. D. Ugarte (Eds.), Handbook of spatial epidemiology. (pp. 195-207). Boca Raton, FL: CRC Press.
Chapter in Book - Research
Hazelton, M. L. (2015). Nonparametric regression. In J. D. Wright (Ed.), International encyclopedia of the social & behavioral sciences. (2nd ed.) (pp. 867-877). Elsevier. doi: 10.1016/B978-0-08-097086-8.42124-0
Chapter in Book - Research
Hazelton, M. L. (2010). Univariate linear regression. In P. Peterson, E. Baker & B. McGaw (Eds.), International encyclopedia of education. (3rd ed.) (pp. 482-488). Elsevier. doi: 10.1016/B978-0-08-044894-7.01373-7
Chapter in Book - Research
Baddeley, A., Davies, T. M., Hazelton, M. L., Rakshit, S., & Turner, R. (2022). Fundamental problems in fitting spatial cluster process models. Spatial Statistics. Advance online publication. doi: 10.1016/j.spasta.2022.100709
Journal - Research Article
Hazelton, M. L. (2022). The emergence of stochastic user equilibria in day-to-day traffic models. Transportation Research Part B: Methodological. Advance online publication. doi: 10.1016/j.trb.2022.02.010
Journal - Research Article
Hazelton, M. L., & Davies, T. M. (2022). Pointwise comparison of two multivariate density functions. Scandinavian Journal of Statistics, 49, 1791-1810. doi: 10.1111/sjos.12565
Journal - Research Article
Hazelton, M. L., McVeagh, M. R., & van Brunt, B. (2021). Geometrically aware dynamic Markov bases for statistical linear inverse problems. Biometrika, 108(3), 609-626. doi: 10.1093/biomet/asaa083
Journal - Research Article
Pirikahu, S., Jones, G., & Hazelton, M. L. (2021). Bayesian credible intervals for population attributable risk from case–control, cohort and cross-sectional studies. Australian & New Zealand Journal of Statistics, 63(4), 639-657. doi: 10.1111/anzs.12352
Journal - Research Article
Liao, S.-J., Marshall, J., Hazelton, M. L., & French, N. P. (2019). Extending statistical models for source attribution of zoonotic diseases: A study of campylobacteriosis. Journal of the Royal Society Interface, 16(150), 20180534. doi: 10.1098/rsif.2018.0534
Journal - Research Article
Betz-Stablein, B., Hazelton, M. L., & Morgan, W. H. (2018). Modelling retinal pulsatile blood flow from video data. Statistical Methods in Medical Research, 27(5), 1575-1584. doi: 10.1177/0962280216665504
Journal - Research Article
Davies, T. M., Flynn, C. R., & Hazelton, M. L. (2018). On the utility of asymptotic bandwidth selectors for spatially adaptive kernel density estimation. Statistics & Probability Letters, 138, 75-81. doi: 10.1016/j.spl.2018.02.067
Journal - Research Article
Davies, T. M., Marshall, J. C., & Hazelton, M. L. (2018). Tutorial on kernel estimation of continuous spatial and spatiotemporal relative risk. Statistics in Medicine, 37(7), 1191-1221. doi: 10.1002/sim.7577
Journal - Research Article
Watling, D. P., & Hazelton, M. L. (2018). Asymptotic approximations of transient behaviour for day-to-day traffic models. Transportation Research Part B: Methodological, 118, 90-105. doi: 10.1016/j.trb.2018.10.010
Journal - Research Article
Hazelton, M. L. (2017). Testing for changes in spatial relative risk. Statistics in Medicine, 36(17), 2735-2749. doi: 10.1002/sim.7306
Journal - Research Article
Hazelton, M. L., & Bilton, T. P. (2017). Polytope samplers for network tomography. Australian & New Zealand Journal of Statistics, 59(4), 495-611. doi: 10.1111/anzs.12216
Journal - Research Article
Davies, T. M., Jones, K., & Hazelton, M. L. (2016). Symmetric adaptive smoothing regimens for estimation of the spatial relative risk function. Computational Statistics & Data Analysis, 101, 12-28. doi: 10.1016/j.csda.2016.02.008
Journal - Research Article
Hazelton, M. L., & Cox, M. P. (2016). Bandwidth selection for kernel log-density estimation. Computational Statistics & Data Analysis, 103, 56-67. doi: 10.1016/j.csda.2016.05.003
Journal - Research Article
Hazelton, M. L., & Parry, K. (2016). Statistical methods for comparison of day-to-day traffic models. Transportation Research Part B: Methodological, 92(Part A), 22-34. doi: 10.1016/j.trb.2015.08.005
Journal - Research Article
Lam, J., Chan, G., Morgan, W. H., Hazelton, M., Betz-Stablein, B., Cringle, S. J., & Yu, D. Y. (2016). Structural characteristics of the optic nerve head influencing human retinal venous pulsations. Experimental Eye Research, 145, 341-346. doi: 10.1016/j.exer.2016.02.003
Journal - Research Article
Morgan, W. H., Hazelton, M. L., & Yu, D.-Y. (2016). Retinal venous pulsation: Expanding our understanding and use of this enigmatic phenomenon. Progress in Retinal & Eye Research, 55, 82-107. doi: 10.1016/j.preteyeres.2016.06.003
Journal - Research Article
Morgan, W. H., House, P. H., Hazelton, M. L., Betz-Stablein, B. D., Chauhan, B. C., Viswanathan, A., & Yu, D.-Y. (2016). Intraocular pressure reduction is associated with reduced venous pulsation pressure. PLoS ONE, 11(1), e0147915. doi: 10.1371/journal.pone.0147915
Journal - Research Article
Parry, K., Watling, D. P., & Hazelton, M. L. (2016). A new class of doubly stochastic day-to-day dynamic traffic assignment models. EURO Journal on Transportation & Logistics, 5(1), 5-23. doi: 10.1007/s13676-013-0037-x
Journal - Research Article
Pirikahu, S., Jones, G., Hazelton, M. L., & Heuer, C. (2016). Bayesian methods of confidence interval construction for the population attributable risk from cross-sectional studies. Statistics in Medicine, 35(18), 3117-3130. doi: 10.1002/sim.6870
Journal - Research Article
Guillot, E. G., Hazelton, M. L., Karafet, T. M., Lansing, J. S., Sudoyo, H., & Cox, M. P. (2015). Relaxed observance of traditional marriage rules allows social connectivity without loss of genetic diversity. Molecular Biology & Evolution, 32(9), 2254-2262. doi: 10.1093/molbev/msv102
Journal - Research Article
Hazelton, M. L. (2015). Network tomography for integer-valued traffic. Annals of Applied Statistics, 9(1), 474-506. doi: 10.1214/15-AOAS805
Journal - Research Article
Morgan, W. H., Abdul-Rahman, A., Yu, D.-Y., Hazelton, M. L., Betz-Stablein, B., & Lind, C. R. P. (2015). Objective detection of retinal vessel pulsation. PLoS ONE, 10(2), e0116475. doi: 10.1371/journal.pone.0116475
Journal - Research Article
Stephenson, T., Hazelton, M., Kupsta, M., Lepore, J., Andreassen, E. J., Hoff, A., … Mitlin, D. (2015). Thiophene mitigates high temperature fouling of metal surfaces in oil refining. Fuel, 139, 411-424. doi: 10.1016/j.fuel.2014.08.049
Journal - Research Article
Bilton, P. A., da Campo, R., Nikzad, R., Hazelton, M., & Derrick, P. J. (2014). Interactions between naphthenic acids: Dependence on molecular structure revealed through statistical analysis of ultra-high-resolution electrospray mass spectra. European Journal of Mass Spectrometry, 20(3), 221-231. doi: 10.1255/ejms.1275
Journal - Research Article
Fernando, W. T. P. S., & Hazelton, M. L. (2014). Generalizing the spatial relative risk function. Spatial & Spatio-temporal Epidemiology, 8, 1-10. doi: 10.1016/j.sste.2013.12.002
Journal - Research Article
Fernando, W. T. P. S., Ganesalingam, S., & Hazelton, M. L. (2014). A comparison of estimators of the geographical relative risk function. Journal of Statistical Computation & Simulation, 84(7), 1471-1485. doi: 10.1080/00949655.2012.748055
Journal - Research Article
Morgan, W. H., Hazelton, M. L., Betz-Stablein, B. D., Yu, D.-Y., Lind, C. R. P., Ravichandran, V., & House, P. H. (2014). Photoplethysmographic measurement of various retinal vascular pulsation parameters and measurement of the venous phase delay. Investigative Ophthalmology & Visual Science, 55(9), 5998-6006. doi: 10.1167/iovs.14-15104
Journal - Research Article
Richards, K. K., Hazelton, M. L., Stevenson, M. A., Lockhart, C. Y., Pinto, J., & Nguyen, L. (2014). Using exceedance probabilities to detect anomalies in routinely recorded animal health data, with particular reference to foot-and-mouth disease in Viet Nam. Spatial & Spatio-temporal Epidemiology, 11, 125-133. doi: 10.1016/j.sste.2014.08.002
Journal - Research Article
Shao, H., Lam, W. H. K., Sumalee, A., Chen, A., & Hazelton, M. L. (2014). Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts. Transportation Research Part B: Methodological, 68, 52-75. doi: 10.1016/j.trb.2014.06.002
Journal - Research Article
Betz-Stablein, B. D., Morgan, W. H., House, P. H., & Hazelton, M. L. (2013). Spatial modeling of visual field data for assessing glaucoma progression. Investigative Ophthalmology & Visual Science, 54(2), 1544-1553. doi: 10.1167/iovs.12-11226
Journal - Research Article
Davies, T. M., & Hazelton, M. L. (2013). Assessing minimum contrast parameter estimation for spatial and spatiotemporal log-Gaussian Cox processes. Statistica Neerlandica, 67(4), 355-389. doi: 10.1111/stan.12011
Journal - Research Article
Parry, K., & Hazelton, M. L. (2013). Bayesian inference for day-to-day dynamic traffic models. Transportation Research Part B: Methodological, 50, 104-115. doi: 10.1016/j.trb.2013.01.003
Journal - Research Article
Parry, K., & Hazelton, M. L. (2012). Estimation of origin–destination matrices from link counts and sporadic routing data. Transportation Research Part B: Methodological, 46(1), 175-188. doi: 10.1016/j.trb.2011.09.009
Journal - Research Article
Davies, T. M., Hazelton, M. L., & Marshall, J. C. (2011). sparr: Analyzing spatial relative risk using fixed and adaptive kernel density estimation in R. Journal of Statistical Software, 39(1). Retrieved from http://www.jstatsoft.org/v39/i01/paper
Journal - Research Article
Hazelton, M. L. (2011). Assessing log-concavity of multivariate densities. Statistics & Probability Letters, 81(1), 121-125. doi: 10.1016/j.spl.2010.10.001
Journal - Research Article
Hazelton, M. L., & Turlach, B. A. (2011). Semiparametric regression with shape-constrained penalized splines. Computational Statistics & Data Analysis, 55(10), 2871-2879. doi: 10.1016/j.csda.2011.04.018
Journal - Research Article
Sanson, R. L., Harvey, N., Garner, M. G., Stevenson, M. A., Davies, T. M., Hazelton, M. L., … Owen, K. (2011). Foot and mouth disease model verification and 'relative validation' through a formal model comparison. Revue Scientifique et Technique, 30(2), 527-540. doi: 10.20506/rst.30.2.2051
Journal - Research Article
Davies, T. M., & Hazelton, M. L. (2010). Adaptive kernel estimation of spatial relative risk. Statistics in Medicine, 29(23), 2423-2437. doi: 10.1002/sim.3995
Journal - Research Article
Hazelton, M. L. (2010). Bayesian inference for network-based models with a linear inverse structure. Transportation Research Part B: Methodological, 44(5), 674-685. doi: 10.1016/j.trb.2010.01.006
Journal - Research Article
Hazelton, M. L. (2010). Statistical inference for transit system origin-destination matrices. Technometrics, 52(2), 221-230. doi: 10.1198/TECH.2010.09021
Journal - Research Article
Hazelton, M. L., & Turlach, B. A. (2010). Semiparametric density deconvolution. Scandinavian Journal of Statistics, 37(1), 91-108. doi: 10.1111/j.1467-9469.2009.00669.x
Journal - Research Article
Marshall, J. C., & Hazelton, M. L. (2010). Boundary kernels for adaptive density estimators on regions with irregular boundaries. Journal of Multivariate Analysis, 101(4), 949-963. doi: 10.1016/j.jmva.2009.09.003
Journal - Research Article
Sadler, R. J., Hazelton, M., Boer, M. M., & Grierson, P. F. (2010). Deriving state-and-transition models from an image series of grassland pattern dynamics. Ecological Modelling, 221(3), 433-444. doi: 10.1016/j.ecolmodel.2009.10.027
Journal - Research Article
Hazelton, M. L., & Davies, T. M. (2009). Inference based on kernel estimates of the relative risk function in geographical epidemiology. Biometrical Journal, 51(1), 98-109. doi: 10.1002/bimj.200810495
Journal - Research Article
Hazelton, M. L., & Marshall, J. C. (2009). Linear boundary kernels for bivariate density estimation. Statistics & Probability Letters, 79(8), 999-1003. doi: 10.1016/j.spl.2008.12.003
Journal - Research Article
Hazelton, M. L., & Turlach, B. A. (2009). Nonparametric density deconvolution by weighted kernel estimators. Statistics & Computing, 19(3), 217-228. doi: 10.1007/s11222-008-9086-7
Journal - Research Article