Overview
Advanced applications of first-order logic. The logical structure of theories, including formal number theory. Proof of the completeness of first-order logic (everything provable in it is valid and everything valid in it is provable).
This paper is an introduction to non-classical logic, covering the basics of systems that go beyond "black and white" reasoning (e.g. modal, intuitionistic, relevant and many-valued logics). Philosophical issues are discussed alongside formal techniques.
About this paper
Paper title | Advanced Formal Logic |
---|---|
Subject | Philosophy |
EFTS | 0.15 |
Points | 18 points |
Teaching period | Not offered in 2024, expected to be offered in 2026 (On campus) |
Domestic Tuition Fees ( NZD ) | $981.75 |
International Tuition Fees | Tuition Fees for international students are elsewhere on this website. |
- Prerequisite
- PHIL 212 or PHIL 222 or PHIL 322
- Schedule C
- Arts and Music
- Eligibility
Prerequisites may be waived on a case-by-case basis.
- Contact
- zach.weber@otago.ac.nz
- More information link
View more information on the Philosophy programme's website.
- Teaching staff
Course co-ordinator and lecturer: Associate Professor Zach Weber
- Paper Structure
Two 1-hour lectures per week and one tutorial.
- Teaching Arrangements
Weekly lectures expand on the basic material covered in readings.
- Textbooks
Introduction to Non-Classical Logic by Graham Priest.
- Graduate Attributes Emphasised
- Lifelong learning, Scholarship, Critical thinking, Self-motivation.
View more information about Otago's graduate attributes. - Learning Outcomes
Students who successfully complete the paper will acquire:
- A working knowledge of several non-classical logics, including the philosophical motivations for these logics
- Competence with checking the validity of arguments in different logics and constructing counterexamples to invalid arguments
- Demonstrated ability to work with abstract models and understand their relationship to data
Timetable
Overview
Advanced applications of first-order logic. The logical structure of theories, including formal number theory. Proof of the completeness of first-order logic (everything provable in it is valid and everything valid in it is provable).
This paper is an introduction to non-classical logic, covering the basics of systems that go beyond "black and white" reasoning (e.g. modal, intuitionistic, relevant and many-valued logics). Philosophical issues are discussed alongside formal techniques.
About this paper
Paper title | Advanced Formal Logic |
---|---|
Subject | Philosophy |
EFTS | 0.15 |
Points | 18 points |
Teaching period | Not offered in 2025, expected to be offered in 2026 (On campus) |
Domestic Tuition Fees | Tuition Fees for 2025 have not yet been set |
International Tuition Fees | Tuition Fees for international students are elsewhere on this website. |
- Prerequisite
- PHIL 212 or PHIL 222 or PHIL 322
- Schedule C
- Arts and Music
- Eligibility
Prerequisites may be waived on a case-by-case basis.
- Contact
- zach.weber@otago.ac.nz
- More information link
View more information on the Philosophy programme's website.
- Teaching staff
Course co-ordinator and lecturer: Associate Professor Zach Weber
- Paper Structure
Two 1-hour lectures per week and one tutorial.
- Teaching Arrangements
Weekly lectures expand on the basic material covered in readings.
- Textbooks
Introduction to Non-Classical Logic by Graham Priest.
- Graduate Attributes Emphasised
- Lifelong learning, Scholarship, Critical thinking, Self-motivation.
View more information about Otago's graduate attributes. - Learning Outcomes
Students who successfully complete the paper will acquire:
- A working knowledge of several non-classical logics, including the philosophical motivations for these logics
- Competence with checking the validity of arguments in different logics and constructing counterexamples to invalid arguments
- Demonstrated ability to work with abstract models and understand their relationship to data