(PhD Louisiana State)
Head of Mathematics
Director of Studies for postgraduate Mathematics: Masters and PhD
Office: Science III, room 232A
Tel +64 3 479 7763
Email boris.baeumer@otago.ac.nz
About
Professor Boris Baeumer has been with the Department of Mathematics & Statistics at the University of Otago since 2001. His expertise is in applied mathematics focusing on movement of particles or organisms in nature that do not adhere to classical theories.
He obtained his Ph.D. in pure mathematics from Louisiana State University, USA in 1997, moved in to applied mathematics during a postdoctoral fellowship in hydrology at the University of Nevada, Reno in 2000. His research on Evolution Equations with Memory and Random Fluctuations is supported by the highly competitive Marsden Fund administered by the Royal Society of New Zealand.
He was awarded the Early Career Award for Distinction in Research by the University of Otago in 2005 and his research on Transport in Fractal Media was supported by the Royal Society of New Zealand through their Marsden Faststart funding scheme during 2004-2005. He has given invited addresses at international conferences and published over 45 scientific articles not just in mathematical journals but also in physics, geophysics, hydrology and computer science.
He served as Chair of the New Zealand Branch of ANZIAM from 2013-2016 and served on the MIS panel of the Marsden Fund 2015-2017.
Boris Baeumer is member of the editorial boards of Fractional Calculus & Applied Analysis, ANZIAM Journal, and Fractional Differential Calculus.
Research Interests
Boris Baeumer's current research interest is in modelling fractal flow and anomalous dispersion; in particular as it pertains to solute transport of (potentially toxic) particles in groundwater flow as well as dispersal of organisms such as viruses or invading species. He is using a new approach that incorporates heavy tailing and fractal pathways. Heavy tailing occurs whenever there is a power-law probability of catastrophic events, and therefore the approach has promising applications in hydrology, ecology (invasion of species), epidemiology, chemical engineering (for example, build-up on electrodes), physics (for example, rays going through the atmosphere), economics (stock-market), meteorology (rainfall patterns, flood events), etc.
Publications
Baeumer, B., Kovács, M., & Parry, M. (2022). A higher order resolvent-positive finite difference approximation for fractional derivatives on bounded domains. Fractional Calculus & Applied Analysis, 25, 299-319. doi: 10.1007/s13540-021-00013-z
Baeumer, B. (2021, May). The power of the limit of a power. University of Otago, Dunedin, New Zealand. [Inaugural Professorial Lecture].
Knowles, A., Linsell, C., Baeumer, B., & Anakin, M. (2021). The development and efficacy of an undergraduate numeracy assessment tool. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo & S. L. Chin (Eds.), Proceedings of the 43rd Annual Conference of the Mathematics Education Research Group of Australasia (MERGA). (pp. 243-250). Adelaide, Australia: Mathematics Education Research Group of Australasia (MERGA). Retrieved from https://www.merga.net.au
Stoltz, M., Baeumer, B., Bouckaert, R., Fox, C., Hiscott, G., & Bryant, D. (2021). Bayesian inference of species trees using diffusion models. Systematic Biology, 70(1), 145-161. doi: 10.1093/sysbio/syaa051
Baeumer, B. (2019). A conjecture: Higher order Grunwald formula. Proceedings of the New Zealand Mathematical Society Colloquium. (pp. 20-21). Retrieved from https://nzmathsoc.org.nz
Baeumer, B., Kovács, M., & Meerschaert, M. M. (2008). Subordinated multiparameter groups of linear operators: Properties via the transference principle. In H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise & J. von Below (Eds.), Functional Analysis and Evolution Equations (The Günter Lumer Volume). (pp. 35-50). Basel, Switzerland: Birkhäuser. doi: 10.1007/978-3-7643-7794-6_3
Chapter in Book - Research
Baeumer, B., Kovács, M., & Parry, M. (2022). A higher order resolvent-positive finite difference approximation for fractional derivatives on bounded domains. Fractional Calculus & Applied Analysis, 25, 299-319. doi: 10.1007/s13540-021-00013-z
Journal - Research Article
Stoltz, M., Baeumer, B., Bouckaert, R., Fox, C., Hiscott, G., & Bryant, D. (2021). Bayesian inference of species trees using diffusion models. Systematic Biology, 70(1), 145-161. doi: 10.1093/sysbio/syaa051
Journal - Research Article
Baeumer, B., Kovács, M., & Sankaranarayanan, H. (2018). Fractional partial differential equations with boundary conditions. Journal of Differential Equations, 264(2), 1377-1410. doi: 10.1016/j.jde.2017.09.040
Journal - Research Article
Baeumer, B., Kovács, M., Meerschaert, M. M., & Sankaranarayanan, H. (2018). Boundary conditions for fractional diffusion. Journal of Computational & Applied Mathematics, 336, 408-424. doi: 10.1016/j.cam.2017.12.053
Journal - Research Article
Baeumer, B., Luks, T., & Meerschaert, M. M. (2018). Space-time fractional Dirichlet problems. Mathematische Nachrichten, 291, 2516-2535. doi: 10.1002/mana.201700111
Journal - Research Article
Baeumer, B., & Straka, P. (2017). Fokker–Planck and Kolmogorov backward equations for continuous time random walk scaling limits. Proceedings of the American Mathematical Society, 145(1), 399-412. doi: 10.1090/proc/13203
Journal - Research Article
Baeumer, B., Kovács, M., Meerschaert, M. M., Schilling, R. L., & Straka, P. (2016). Reflected spectrally negative stable processes and their governing equations. Transactions of the American Mathematical Society, 368(1), 227-248. doi: 10.1090/tran/6360
Journal - Research Article
Baeumer, B., Geissert, M., & Kovács, M. (2015). Existence, uniqueness and regularity for a class of semilinear stochastic Volterra equations with multiplicative noise. Journal of Differential Equations, 258(2), 535-554. doi: 10.1016/j.jde.2014.09.020
Journal - Research Article
Baeumer, B., Kovács, M., & Sankaranarayanan, H. (2015). Higher order Grünwald approximations of fractional derivatives and fractional powers of operators. Transactions of the American Mathematical Society, 367(2), 813-834. doi: 10.1090/S0002-9947-2014-05887-X
Journal - Research Article
Baeumer, B., Zhang, Y., & Schumer, R. (2015). Incorporating super-diffusion due to sub-grid heterogeneity to capture non-fickian transport. Groundwater, 53(5), 699-708. doi: 10.1111/gwat.12267
Journal - Research Article
Zhang, Y., Meerschaert, M. M., Baeumer, B., & LaBolle, E. M. (2015). Modeling mixed retention and early arrivals in multidimensional heterogeneous media using an explicit Lagrangian scheme. Water Resources Research, 51, 6311-6337. doi: 10.1002/ 2015WR016902
Journal - Research Article
Zhang, Y., Green, C. T., & Baeumer, B. (2014). Linking aquifer spatial properties and non-Fickian transport in mobile-immobile like alluvial settings. Journal of Hydrology, 512, 315-331. doi: 10.1016/j.jhydrol.2014.02.064
Journal - Research Article
Zhang, Y., Martin, R. L., Chen, D., Baeumer, B., Sun, H., & Chen, L. (2014). A subordinated advection model for uniform bed load transport from local to regional scales. Journal of Geophysical Research: Earth Surface, 119(12), 2711-2729. doi: 10.1002/2014JF003145
Journal - Research Article
Bolster, D., Benson, D. A., Meerschaert, M. M., & Baeumer, B. (2013). Mixing-driven equilibrium reactions in multidimensional fractional advection-dispersion systems. Physica A, 392(10), 2513-2525. doi: 10.1016/j.physa.2012.12.040
Journal - Research Article
Baeumer, B., & Kovács, M. (2012). Approximating multivariate tempered stable processes. Journal of Applied Probability, 49(1), 167-183.
Journal - Research Article
Schumer, R., Baeumer, B., & Meerschaert, M. (2011). Extremal behavior of a coupled continuous time random walk. Physica A, 390(3), 505-511. doi: 10.1016/j.physa.2010.10.018
Journal - Research Article
Baeumer, B., & Meerschaert, M. M. (2010). Tempered stable Lévy motion and transient super-diffusion. Journal of Computational & Applied Mathematics, 233(10), 2438-2448. doi: 10.1016/j.cam.2009.10.027
Journal - Research Article
Baeumer, B., Meerschaert, M., & Naber, M. (2010). Stochastic models for relativistic diffusion. Physical Review E: Statistical, Nonlinear, & Soft Matter Physics, 82, 011132. doi: 10.1103/PhysRevE.82.011132
Journal - Research Article
Harman, C. J., Reeves, D. M., Baeumer, B., & Sivapalan, M. (2010). A subordinated kinematic wave equation for heavy-tailed flow responses from heterogeneous hillslopes. Journal of Geophysical Research, 115, F00A08. doi: 10.1029/2009jf001273
Journal - Research Article
Meerschaert, M. M., Zhang, Y., & Baeumer, B. (2010). Particle tracking for fractional diffusion with two time scales. Computers & Mathematics with Applications, 59(3), 1078-1086. doi: 10.1016/j.camwa.2009.05.009
Journal - Research Article
Zhang, Y., Baeumer, B., & Reeves, D. M. (2010). A tempered multiscaling stable model to simulate transport in regional-scale fractured media. Geophysical Research Letters, 37, L11405. doi: 10.1029/2010GL043609
Journal - Research Article
Baeumer, B., Chatterjee, L., Hinow, P., Rades, T., Radunskaya, A., & Tucker, I. (2009). Predicting the drug release kinetics of matrix tablets. Discrete & Continuous Dynamical Systems Series B, 12(2), 261-277. doi: 10.3934/dcdsb.2009.12.261
Journal - Research Article
Baeumer, B., Haase, M., & Kovács, M. (2009). Unbounded functional calculus for bounded groups with applications. Journal of Evolution Equations, 9(1), 171-195. doi: 10.1007/s00028-009-0012-z
Journal - Research Article
Baeumer, B., Meerschaert, M. M., & Nane, E. (2009). Brownian subordinators and fractional Cauchy problems. Transactions of the American Mathematical Society, 361(7), 3915-3930.
Journal - Research Article
Baeumer, B., Meerschaert, M. M., & Nane, E. (2009). Space-time duality for fractional diffusion. Journal of Applied Probability, 46(4), 1100-1115.
Journal - Research Article
Schumer, R., Meerschaert, M. M., & Baeumer, B. (2009). Fractional advection-dispersion equations for modeling transport at the Earth surface. Journal of Geophysical Research, 114, F00A07. doi: 10.1029/2008JF001246
Journal - Research Article
Baeumer, B., Kovács, M., & Meerschaert, M. M. (2008). Numerical solutions for fractional reaction-diffusion equations. Computers & Mathematics with Applications, 55(10), 2212-2226. doi: 10.1016/j.camwa.2007.11.012
Journal - Research Article
Meerschaert, M. M., Zhang, Y., & Baeumer, B. (2008). Tempered anomalous diffusion in heterogeneous systems. Geophysical Research Letters, 35(17), L17403. doi: 10.1029/2008GL034899
Journal - Research Article
Zhang, Y., Benson, D. A., & Baeumer, B. (2008). Moment analysis for spatiotemporal fractional dispersion. Water Resources Research, 44(4), W04424. doi: 10.1029/2007WR006291
Journal - Research Article
Zhang, Y., Meerschaert, M. M., & Baeumer, B. (2008). Particle tracking for time-fractional diffusion. Physical Review E: Statistical, Nonlinear, & Soft Matter Physics, 78, 036705. doi: 10.1103/PhysRevE.78.036705
Journal - Research Article
Baeumer, B., & Meerschaert, M. M. (2007). Fractional diffusion with two time scales. Physica A, 373, 237-251.
Journal - Research Article
Baeumer, B., Kovács, M., & Meerschaert, M. M. (2007). Fractional reproduction-dispersal equations and heavy tail dispersal kernels. Bulletin of Mathematical Biology, 69, 2281-2297.
Journal - Research Article
Zhang, Y., Benson, D. A., & Baeumer, B. (2007). Predicting the tails of breakthrough curves in regional-scale alluvial systems. Ground Water, 45(4), 473-484.
Journal - Research Article
Benson, D. A., Meerschaert, M. M., Baeumer, B., & Scheffler, H.-P. (2006). Aquifer operator scaling and the effect on solute mixing and dispersion. Water Resources Research, 42. Retrieved from http://www.agu.org/journals/wr/wr0601/2004WR003755/2004WR003755.pdf
Journal - Research Article
Zhang, Y., Baeumer, B., & Benson, D. A. (2006). Relationship between flux and resident concentrations for anomalous dispersion. Geophysical Research Letters, 33. doi: 10.1029/2006GL027251
Journal - Research Article
Baeumer, B., Benson, D. A., & Meerschaert, M. M. (2005). Advection and dispersion in time and space. Physica A, 350, 245-262.
Journal - Research Article
Baeumer, B., Kurita, S., & Meerschaert, M. (2005). Inhomogeneous fractional diffusion equations. Fractional Calculus & Applied Analysis, 8(4), 371-386.
Journal - Research Article
Baeumer, B., Meerschaert, M. M., & Mortensen, J. (2005). Space-time fractional derivative operators. Proceedings of the American Mathematical Society, 133(8), 2273-2282.
Journal - Research Article
Baeumer, B. (2003). On the inversion of the convolution and Laplace transform. Transactions of the American Mathematical Society, 355(3), 1201-1212.
Journal - Research Article
Schumer, R., Benson, D. A., Meerschaert, M. M., & Baeumer, B. (2003). Fractal mobile/immobile solute transport. Water Resources Research, 39(10), 1296.
Journal - Research Article
Schumer, R., Benson, D. A., Meerschaert, M. M., & Baeumer, B. (2003). Multiscaling fractional advection-dispersion equations and their solutions. Water Resources Research, 39(1), 1022.
Journal - Research Article
Meerschaert, M. M., Benson, D. A., Scheffler, H.-P., & Baeumer, B. (2002). Stochastic solution of space-time fractional diffusion equations. Physical Review E: Statistical Physics, Plasmas, Fluids, & Related Interdisciplinary Topics, 65(4), 041103-1-041103-4. doi: 10.1103/PhysRevE.65.041103
Journal - Research Article
Baeumer, B., & Meerschaert, M. M. (2001). Stochastic solutions for fractional Cauchy problems. Fractional Calculus & Applied Analysis, 4(4), 481-500.
Journal - Research Article
Baeumer, B., Benson, D. A., Meerschaert, M. M., & Wheatcraft, S. W. (2001). Subordinated advection-dispersion equation for contaminant transport. Water Resources Research, 37(6), 1543-1550.
Journal - Research Article
Meerschaert, M. M., Benson, D. A., & Baeumer, B. (2001). Operator Lévy motion and multiscaling anomalous diffusion. Physical Review E: Statistical Physics, Plasmas, Fluids, & Related Interdisciplinary Topics, 63(2), 1112-1117. doi: 10.1103/PhysRevE.63.021112
Journal - Research Article
Meerschaert, M., Benson, D. A., & Baeumer, B. (1999). Multidimensional advection and fractional dispersion. Physical Review E: Statistical Physics, Plasmas, Fluids, & Related Interdisciplinary Topics, 59(5), 5026-5028.
Journal - Research Article
Zhang, Y., Baeumer, B., Chen, L., Reeves, D. M., & Sun, H. (2017). A fully subordinated linear flow model for hillslope subsurface stormflow [Technical report]. Water Resources Research, 53(4), 3491-3504. doi: 10.1002/2016WR020192
Journal - Research Other
Knowles, A., Linsell, C., Baeumer, B., & Anakin, M. (2021). The development and efficacy of an undergraduate numeracy assessment tool. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo & S. L. Chin (Eds.), Proceedings of the 43rd Annual Conference of the Mathematics Education Research Group of Australasia (MERGA). (pp. 243-250). Adelaide, Australia: Mathematics Education Research Group of Australasia (MERGA). Retrieved from https://www.merga.net.au
Conference Contribution - Published proceedings: Full paper
Taylor, S. W., Baeumer, B., & Nicholson, R. (2015). A calibration transform for families of spectroscopes. ANZIAM Journal, 57, (pp. M268-M288). doi: 10.21914/anziamj.v57i0.11238
Conference Contribution - Published proceedings: Full paper