Accessibility Skip to Global Navigation Skip to Local Navigation Skip to Content Skip to Search Skip to Site Map Menu

Lab personnel

^ Top of Page

Research interests

How the heart maintains its pump function under conditions of stress has been the focus of my research career. In the last decade, my research has focused on determining the changes in autonomic regulation and heart function in obesity and diabetes. More recently this has extended to determining the functional interaction between epicardial adipose tissue and the heart, especially in relation to development of cardiac arrhythmias and obesity. To this end, functional biomedical data at cellular and organ level, human myocardial and clinical data are obtained through HeartOtago. This translational knowledge creates the platform that is vital for the development of specific therapeutics for the increasing cohort of individuals with metabolic disease and arrhythmias to improve their heart health.

^ Top of Page

Expertise

  • Diabetes, Atrial Fibrillation, Obesity, Pulmonary Hypertension, Ischemia, Hypertrophy and Heart Failure models
  • Ex vivo isolated cardiac muscles (papillary muscles, trabeculae, human and rat)
  • Ex vivo isolated Langendorff-perfused hearts for simultaneous LV and RV pressure and coronary flow measurements (rats and mice)
  • Human epicardial adipose tissue culture

^ Top of Page

Current funding

  • Time course of central neuronal activation in diabetes; University of Otago Research grant (PI) 
  • Nitric oxide as a mediator of cardiac signalling; Marsden Fund (AI)
  • Can love break your heart? Oxytocin makes the failing heart skip a beat!; Health Research Council (AI) 

^ Top of Page

Previous funding

  • Heart Foundation (2012; 2017-2018; 2018-2020 2x)
  • Otago Medical Research Foundation (2016)
  • OMS Collaborative Research Grant (2015) 
  • HealthCare Otago Charitable Trust NZ (2013 and 2011)
  • University of Otago Research grant (2012 and 2014)
  • OMRF Laurenson Award NZ (2012)

^ Top of Page

Selected publications

Ashley, Z., Futi, T., Van Hout, I., Coffey, S., Schwenke, D. O., Bahn, A., & Lamberts, R. R. (2022). Cardiac fibrosis in right atrial tissue is not different in male Pasifika and Pākehā cardiac surgery patients in Aotearoa. Pacific Journal of Medical Sciences, 22(2), 11-30.

Aitken-Buck, H. M., Moore, M., Whalley, G. A., Lohner, L., Ondruschka, B., Coffey, S., … Lamberts, R. R. (2022). Estimating heart mass from heart volume as measured from post-mortem computed tomography. Forensic Science, Medicine, & Pathology. Advance online publication. doi: 10.1007/s12024-022-00478-1

Waddell, H. M. M., Moore, M., Herbert-Olsen, M. A., Stiles, M. K., Tse, R. D., Coffey, S., Lamberts, R. R., & Aitken-Buck, H. M. (2022). Identifying sex differences in predictors of epicardial fat cell morphology. Adipocyte, 11(1), 325-334. doi: 10.1080/21623945.2022.2073854

Gonano, L. A., Aitken-Buck, H. M., Chakraborty, A. D., Worthington, L. P. I., Cully, T. R., Lamberts, R. R., … Jones, P. P. (2022). Regulation of cardiac ryanodine receptor function by the cyclic-GMP dependent protein kinase G. Current Research in Physiology, 5, 171-178. doi: 10.1016/j.crphys.2022.03.004

Satthenapalli, R., Lee, S., Bellae Papannarao, J., Hore, T. A., Chakraborty, A., Jones, P. P., Lamberts, R. R., & Katare, R. (2022). Stage-specific regulation of signalling pathways to differentiate pluripotent stem cells to cardiomyocytes with ventricular lineage. Stem Cell Research & Therapy, 13(1), 185. doi: 10.1186/s13287-022-02845-9

Aitken-Buck, H. M., Krause, J., van Hout, I., Davis, P. J., Bunton, R. W., Parry, D. J., Williams, M. J. A., Coffey, S., … Jones, P. P., & Lamberts, R. R. (2021). Long-chain acylcarnitine 18:1 acutely increases human atrial myocardial contractility and arrhythmia susceptibility. American Journal of Physiology: Heart & Circulatory Physiology, 321, H162-H174. doi: 10.1152/ajpheart.00184.2021

Sethi, S., Augustine, R. A., Bouwer, G. T., Perkinson, M. R., Cheong, I., Bussey, C. T., Schwenke, D. O., Brown, C. H., & Lamberts, R. R. (2021). Increased neuronal activation in sympathoregulatory regions of the brain and spinal cord in type 2 diabetic rats. Journal of Neuroendocrinology. Advance online publication. doi: 10.1111/jne.13016

Munro, M. L., van Hout, I., Aitken-Buck, H., Sugunesegran, R., Bhagwat, K., Davis, P. J., Lamberts, R. R., Coffey, S., … Jones, P. P. (2021). Human atrial fibrillation is not associated with remodeling of ryanodine receptor clusters. Frontiers in Cell & Developmental Biology, 9, 633704. doi: 10.3389/fcell.2021.633704

Frisk, M., Le, C., Shen, X., Røe, Å., Hou, Y., Manfra, O., … van Hout, I., … Lamberts, R. R., … Coffey, S., … Jones, P. P., … Louch, W. E. (2021). Etiology-dependent impairment of diastolic cardiomyocyte calcium homeostasis in heart failure with preserved ejection fraction. JACC, 77(4), 405-419. doi: 10.1016/j.jacc.2020.11.044

Aitken-Buck, H. M., Babakr, A. A., Fomison-Nurse, I. C., van Hout, I., Davis, P. J., Bunton, R. W., Williams, M. J. A., Coffey, S., Jones, P. P., & Lamberts, R. R. (2020). Inotropic and lusitropic, but not arrhythmogenic, effects of adipocytokine resistin on human atrial myocardium. American Journal of Physiology: Endocrinology & Metabolism, 319, E540-E547. doi: 10.1152/ajpendo.00202.2020

Aitken-Buck, H. M., Krause, J., Zeller, T., Jones, P. P., & Lamberts, R. R. (2020). Long-chain acylcarnitines and cardiac excitation-contraction coupling: Links to arrhythmias. Frontiers in Physiology, 11, 577856. doi: 10.3389/fphys.2020.577856

Babakr, A. A., Fomison-Nurse, I. C., van Hout, I., Aitken-Buck, H. M., Sugunesegran, R., Davis, P. J., Bunton, R. W., Williams, M. J. A., Coffey, S., Stiles, M. K., Jones, P. P., & Lamberts, R. R. (2020). Acute interaction between human epicardial adipose tissue and human atrial myocardium induce arrhythmic susceptibility. American Journal of Physiology: Endocrinology & Metabolism, 318, E164-E172. doi: 10.1152/ajpendo.00374.2019

Aitken-Buck, H. M., Babakr, A. A., Coffey, S., Jones, P. P., Tse, R. D., & Lamberts, R. R. (2019). Epicardial adipocyte size does not correlate with body mass index. Cardiovascular Pathology, 43, 107144. doi: 10.1016/j.carpath.2019.07.003

Aitken-Buck, H. M., Moharram, M., Babakr, A. A., Reijers, R., Van Hout, I., Fomison-Nurse, I. C., Sugunesegran, R., … Bunton, R. W., Williams, M. J. A., … Jones, P. P., Coffey, S., & Lamberts, R. R. (2019). Relationship between epicardial adipose tissue thickness and epicardial adipocyte size with increasing body mass index. Adipocyte, 8(1), 412-420. doi: 10.1080/21623945.2019.1701387

Bussey, C. T., Babakr, A. A., Iremonger, R. R., van Hout, I., Wilkins, G. T., Lamberts, R. R., & Erickson, J. R. (2020). Carvedilol and metoprolol are both able to preserve myocardial function in type 2 diabetes. Physiological Reports, 8(5), e14394. doi: 10.14814/phy2.14394

Moharram, M. A., Aitken-Buck, H. M., Reijers, R., van Hout, I., Williams, M. J. A., Jones, P. P., Whalley, G. A., Lamberts, R. R., & Coffey, S. (2020). Correlation between epicardial adipose tissue and body mass index in New Zealand ethnic populations. New Zealand Medical Journal, 133(1516), 22-32. Retrieved from https://www.nzma.org.nz/journal

Loper, N., Garland, J., Ondruschka, B., Lamberts, R., Stables, S., & Tse, R. (2020). Ventricular weight increases proportionally with total heart weight in postmortem population. American Journal of Forensic Medicine & Pathology, 41(4), 259-262. doi: 10.1097/paf.0000000000000568

Cook, R. F., Bussey, C. T., Fomison-Nurse, I. C., Hughes, G., Bahn, A., Cragg, P. A., & Lamberts, R. R. (2019). β2-adrenoceptors indirectly support impaired β1-adrenoceptor responsiveness in the isolated type 2 diabetic rat heart. Experimental Physiology, 104, 808-818. doi: 10.1113/EP087437

Moharram, M. A., Lamberts, R. R., Whalley, G., Williams, M. J. A., & Coffey, S. (2019). Myocardial tissue characterisation using echocardiographic deformation imaging. Cardiovascular Ultrasound, 17, 27. doi: 10.1186/s12947-019-0176-9

Wilson, G. A., Wilkins, G. T., Cotter, J. D., Lamberts, R. R., Lal, S., & Baldi, J. C. (2019). HIIT improves left ventricular exercise response in adults with type 2 diabetes. Medicine & Science in Sports & Exercise, 51(6), 1099-1105. doi: 10.1249/mss.0000000000001897

Bussey, C. T., Thaung, H. P. A., Hughes, G., Bahn, A., & Lamberts, R. R. (2018). Cardiac β-adrenergic responsiveness of obese Zucker rats: The role of AMPK. Experimental Physiology, 103(8), 1067-1075. doi: 10.1113/ep087054

Daniels, L. J., Wallace, R. S., Nicholson, O. M., Wilson, G. A., McDonald, F. J., Jones, P. P., Baldi, J. C., Lamberts, R. R., & Erickson, J. R. (2018). Inhibition of calcium/calmodulin-dependent kinase II restores contraction and relaxation in isolated cardiac muscle from type 2 diabetic rats. Cardiovascular Diabetology, 17, 89. doi: 10.1186/s12933-018-0732-x

Pearson, J. T., Collie, N., Lamberts, R. R., Inagaki, T., Yoshimoto, M., Umetani, K., … Wilkins, G., Jones, P. P., … Schwenke, D. O. (2018). Ghrelin preserves ischemia-induced vasodilation of male rat coronary vessels following beta-adrenergic receptor blockade. Endocrinology, 159(4), 1763-1773. doi: 10.1210/en.2017-03070

Bussey, C. T., & Lamberts, R. R. (2017). Effect of type 2 diabetes, surgical incision, and volatile anesthesia on hemodynamics in the rat. Physiological Reports, 5(14), e13352. doi: 10.14814/phy2.13352

Cook, R. F., Bussey, C. T., Mellor, K. M., Cragg, P. A., & Lamberts, R. R. (2017). β1-Adrenoceptor, but not β2-adrenoceptor, subtype regulates heart rate in type 2 diabetes rats in vivo. Experimental Physiology, 102(8), 911-923. doi: 10.1113/ep086293

^ Top of Page